

Vyper

	Overview
	Principles and Goals

Getting Started

	Installing Vyper
	Docker

	PIP

	nix

	Vyper by Example
	Simple Open Auction

	Blind Auction

	Safe Remote Purchases

	Crowdfund

	Voting

	Company Stock

Language Description

	Structure of a Contract
	Pragmas

	State Variables

	Functions

	Events

	Interfaces

	Structs

	Types
	Value Types

	Reference Types

	Initial Values

	Type Conversions

	Environment Variables and Constants
	Environment Variables

	Custom Constants

	Statements
	Control Flow

	Event Logging

	Assertions and Exceptions

	Control Structures
	Functions

	if statements

	for loops

	Scoping and Declarations
	Variable Declaration

	Storage Layout

	Scoping Rules

	Built-in Functions
	Bitwise Operations

	Chain Interaction

	Cryptography

	Data Manipulation

	Math

	Utilities

	Interfaces
	Declaring and using Interfaces

	Importing Interfaces

	Built-in Interfaces

	Implementing an Interface

	Extracting Interfaces

	Event Logging
	Example of Logging

	Declaring Events

	Logging Events

	Listening for Events

	NatSpec Metadata
	Example

	Tags

	Documentation Output

Using the Compiler

	Compiling a Contract
	Command-Line Compiler Tools

	Online Compilers

	Compiler Optimization Modes

	Setting the Target EVM Version

	Compiler Input and Output JSON Description

	Compiler Exceptions
	ArgumentException

	CallViolation

	ArrayIndexException

	EventDeclarationException

	EvmVersionException

	FunctionDeclarationException

	ImmutableViolation

	InterfaceViolation

	InvalidAttribute

	InvalidLiteral

	InvalidOperation

	InvalidReference

	InvalidType

	IteratorException

	JSONError

	NamespaceCollision

	NatSpecSyntaxException

	NonPayableViolation

	OverflowException

	StateAccessViolation

	StructureException

	SyntaxException

	TypeMismatch

	UndeclaredDefinition

	VariableDeclarationException

	VersionException

	ZeroDivisionException

	CompilerPanic

	Deploying a Contract

	Testing a Contract
	Testing with Brownie

	Testing with Ethereum Tester

Additional Resources

	Other resources and learning material
	General

	Frameworks and tooling

	Security

	Conference presentations

	Unmaintained

	Release Notes
	v0.4.0b1 (“Nagini”)

	v0.3.10 (“Black Adder”)

	v0.3.9 (“Common Adder”)

	v0.3.8

	v0.3.7

	v0.3.6

	v0.3.5

	v0.3.4

	v0.3.3

	v0.3.2

	v0.3.1

	v0.3.0

	v0.2.16

	v0.2.15

	v0.2.14

	v0.2.13

	v0.2.12

	v0.2.11

	v0.2.10

	v0.2.9

	v0.2.8

	v0.2.7

	v0.2.6

	v0.2.5

	v0.2.4

	v0.2.3

	v0.2.2

	v0.2.1

	v0.1.0-beta.17

	v0.1.0-beta.16

	v0.1.0-beta.15

	v0.1.0-beta.14

	v0.1.0-beta.13

	v0.1.0-beta.12

	v0.1.0-beta.11

	v0.1.0-beta.10

	v0.1.0-beta.9

	Prior to v0.1.0-beta.9

	Contributing
	Types of Contributions

	How to Suggest Improvements

	How to Report Issues

	Fix Bugs

	Style Guide

	Workflow for Pull Requests

	Style Guide
	Project Organization

	Code Style

	Tests

	Documentation

	Internal Documentation

	Commit Messages

	Vyper Versioning Guideline
	Motivation

	Version Types

	Pull Requests

	Communication

 [image: Vyper logo]
Vyper

Vyper is a contract-oriented, pythonic programming language that targets the Ethereum Virtual Machine (EVM) [https://ethereum.org/learn/#ethereum-basics].

Principles and Goals

	Security: It should be possible and natural to build secure smart-contracts in Vyper.

	Language and compiler simplicity: The language and the compiler implementation should strive to be simple.

	Auditability: Vyper code should be maximally human-readable. Furthermore, it should be maximally difficult to write misleading code. Simplicity for the reader is more important than simplicity for the writer, and simplicity for readers with low prior experience with Vyper (and low prior experience with programming in general) is particularly important.

Because of this Vyper provides the following features:

	Bounds and overflow checking: On array accesses and arithmetic.

	Support for signed integers and decimal fixed point numbers

	Decidability: It is possible to compute a precise upper bound for the gas consumption of any Vyper function call.

	Strong typing

	Clean and understandable compiler code

	Support for pure functions: Anything marked pure is not allowed to change the state.

	Code reuse through composition: Vyper supports code reuse through composition, and to help auditors, requires syntactic marking of dependencies which potentially modify state.

Following the principles and goals, Vyper does not provide the following features:

	Modifiers: For example in Solidity you can define a function foo() mod1 { ... }, where mod1 can be defined elsewhere in the code to include a check that is done before execution, a check that is done after execution, some state changes, or possibly other things. Vyper does not have this, because it makes it too easy to write misleading code. mod1 just looks too innocuous for something that could add arbitrary pre-conditions, post-conditions or state changes. Also, it encourages people to write code where the execution jumps around the file, harming auditability. The usual use case for a modifier is something that performs a single check before execution of a program; our recommendation is to simply inline these checks as asserts.

	Class inheritance: Class inheritance requires readers to jump between multiple files to understand what a program is doing, and requires readers to understand the rules of precedence in case of conflicts (“Which class’s function X is the one that’s actually used?”).

	Inline assembly: Adding inline assembly would make it no longer possible to search for a variable name in order to find all instances where that variable is read or modified.

	Function overloading: This can cause lots of confusion on which function is called at any given time. Thus it’s easier to write misleading code (foo("hello") logs “hello” but foo("hello", "world") steals your funds). Another problem with function overloading is that it makes the code much harder to search through as you have to keep track on which call refers to which function.

	Operator overloading: Operator overloading makes writing misleading code possible. For example + could be overloaded so that it executes commands that are not visible at a first glance, such as sending funds the user did not want to send.

	Recursive calling: Recursive calling makes it impossible to set an upper bound on gas limits, opening the door for gas limit attacks.

	Infinite-length loops: Similar to recursive calling, infinite-length loops make it impossible to set an upper bound on gas limits, opening the door for gas limit attacks.

	Binary fixed point: Decimal fixed point is better, because any decimal fixed point value written as a literal in code has an exact representation, whereas with binary fixed point approximations are often required (e.g. (0.2)10 = (0.001100110011…)2, which needs to be truncated), leading to unintuitive results, e.g. in Python 0.3 + 0.3 + 0.3 + 0.1 != 1.

Vyper does not strive to be a 100% replacement for everything that can be done in Solidity; it will deliberately forbid things or make things harder if it deems fit to do so for the goal of increasing security.

Installing Vyper

Take a deep breath, follow the instructions, and please
create an issue [https://github.com/vyperlang/vyper/issues] if you encounter
any errors.

Note

The easiest way to experiment with the language is to use the Remix online compiler [https://remix.ethereum.org].
(Activate the vyper-remix plugin in the Plugin manager.)

Docker

Vyper can be downloaded as docker image from dockerhub [https://hub.docker.com/r/vyperlang/vyper/tags?page=1&ordering=last_updated]:

docker pull vyperlang/vyper

To run the compiler use the docker run command:

docker run -v $(pwd):/code vyperlang/vyper /code/<contract_file.vy>

Alternatively you can log into the docker image and execute vyper on the prompt.

docker run -v $(pwd):/code/ -it --entrypoint /bin/bash vyperlang/vyper
root@d35252d1fb1b:/code# vyper <contract_file.vy>

The normal parameters are also supported, for example:

docker run -v $(pwd):/code vyperlang/vyper -f abi /code/<contract_file.vy>
[{'name': 'test1', 'outputs': [], 'inputs': [{'type': 'uint256', 'name': 'a'}, {'type': 'bytes', 'name': 'b'}], 'constant': False, 'payable': False, 'type': 'function', 'gas': 441}, {'name': 'test2', 'outputs': [], 'inputs': [{'type': 'uint256', 'name': 'a'}], 'constant': False, 'payable': False, 'type': 'function', 'gas': 316}]

Note

If you would like to know how to install Docker, please follow their documentation [https://docs.docker.com/get-docker/].

PIP

Installing Python

Vyper can only be built using Python 3.6 and higher. If you need to know how to install the correct version of python,
follow the instructions from the official Python website [https://wiki.python.org/moin/BeginnersGuide/Download].

Creating a virtual environment

It is strongly recommended to install Vyper in a virtual Python
environment, so that new packages installed and dependencies built are
strictly contained in your Vyper project and will not alter or affect your
other development environment set-up.
For easy virtualenv management, we recommend either pyenv [https://github.com/pyenv/pyenv]
or Poetry [https://github.com/python-poetry/poetry].

Note

To find out more about virtual environments, check out:
virtualenv guide [https://docs.python.org/3/library/venv.html].

Installing Vyper

Each tagged version of vyper is uploaded to pypi [https://pypi.org/project/vyper/], and can be installed using pip:

pip install vyper

To install a specific version use:

pip install vyper==0.3.7

You can check if Vyper is installed completely or not by typing the following in your terminal/cmd:

vyper --version

nix

View the versions supported through nix at nix package search [https://search.nixos.org/packages?channel=21.05&show=vyper&from=0&size=50&sort=relevance&query=vyper]

Note

The derivation for Vyper is located at nixpkgs [https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/compilers/vyper/default.nix]

Installing Vyper

nix-env -iA nixpkgs.vyper

Vyper by Example

Simple Open Auction

As an introductory example of a smart contract written in Vyper, we will begin
with a simple open auction contract. As we dive into the code,
it is important to remember that all Vyper syntax is valid Python3 syntax,
however not all Python3 functionality is available in Vyper.

In this contract, we will be looking at a simple open auction contract where
participants can submit bids during a limited time period. When the auction
period ends, a predetermined beneficiary will receive the amount of the highest
bid.

 1#pragma version >0.3.10
 2
 3# Open Auction
 4
 5# Auction params
 6# Beneficiary receives money from the highest bidder
 7beneficiary: public(address)
 8auctionStart: public(uint256)
 9auctionEnd: public(uint256)
10
11# Current state of auction
12highestBidder: public(address)
13highestBid: public(uint256)
14
15# Set to true at the end, disallows any change
16ended: public(bool)
17
18# Keep track of refunded bids so we can follow the withdraw pattern
19pendingReturns: public(HashMap[address, uint256])
20
21# Create a simple auction with `_auction_start` and
22# `_bidding_time` seconds bidding time on behalf of the
23# beneficiary address `_beneficiary`.
24@deploy
25def __init__(_beneficiary: address, _auction_start: uint256, _bidding_time: uint256):
26 self.beneficiary = _beneficiary
27 self.auctionStart = _auction_start # auction start time can be in the past, present or future
28 self.auctionEnd = self.auctionStart + _bidding_time
29 assert block.timestamp < self.auctionEnd # auction end time should be in the future
30
31# Bid on the auction with the value sent
32# together with this transaction.
33# The value will only be refunded if the
34# auction is not won.
35@external
36@payable
37def bid():
38 # Check if bidding period has started.
39 assert block.timestamp >= self.auctionStart
40 # Check if bidding period is over.
41 assert block.timestamp < self.auctionEnd
42 # Check if bid is high enough
43 assert msg.value > self.highestBid
44 # Track the refund for the previous high bidder
45 self.pendingReturns[self.highestBidder] += self.highestBid
46 # Track new high bid
47 self.highestBidder = msg.sender
48 self.highestBid = msg.value
49
50# Withdraw a previously refunded bid. The withdraw pattern is
51# used here to avoid a security issue. If refunds were directly
52# sent as part of bid(), a malicious bidding contract could block
53# those refunds and thus block new higher bids from coming in.
54@external
55def withdraw():
56 pending_amount: uint256 = self.pendingReturns[msg.sender]
57 self.pendingReturns[msg.sender] = 0
58 send(msg.sender, pending_amount)
59
60# End the auction and send the highest bid
61# to the beneficiary.
62@external
63def endAuction():
64 # It is a good guideline to structure functions that interact
65 # with other contracts (i.e. they call functions or send Ether)
66 # into three phases:
67 # 1. checking conditions
68 # 2. performing actions (potentially changing conditions)
69 # 3. interacting with other contracts
70 # If these phases are mixed up, the other contract could call
71 # back into the current contract and modify the state or cause
72 # effects (Ether payout) to be performed multiple times.
73 # If functions called internally include interaction with external
74 # contracts, they also have to be considered interaction with
75 # external contracts.
76
77 # 1. Conditions
78 # Check if auction endtime has been reached
79 assert block.timestamp >= self.auctionEnd
80 # Check if this function has already been called
81 assert not self.ended
82
83 # 2. Effects
84 self.ended = True
85
86 # 3. Interaction
87 send(self.beneficiary, self.highestBid)

As you can see, this example only has a constructor, two methods to call, and
a few variables to manage the contract state. Believe it or not, this is all we
need for a basic implementation of an auction smart contract.

Let’s get started!

 3# Open Auction
 4
 5# Auction params
 6# Beneficiary receives money from the highest bidder
 7beneficiary: public(address)
 8auctionStart: public(uint256)
 9auctionEnd: public(uint256)
10
11# Current state of auction
12highestBidder: public(address)
13highestBid: public(uint256)
14
15# Set to true at the end, disallows any change
16ended: public(bool)

We begin by declaring a few variables to keep track of our contract state.
We initialize a global variable beneficiary by calling public on the
datatype address. The beneficiary will be the receiver of money from
the highest bidder. We also initialize the variables auctionStart and
auctionEnd with the datatype uint256 to manage the open auction
period and highestBid with datatype uint256, the smallest
denomination of ether, to manage auction state. The variable ended is a
boolean to determine whether the auction is officially over. The variable pendingReturns is a map which
enables the use of key-value pairs to keep proper track of the auctions withdrawal pattern.

You may notice all of the variables being passed into the public
function. By declaring the variable public, the variable is
callable by external contracts. Initializing the variables without the public
function defaults to a private declaration and thus only accessible to methods
within the same contract. The public function additionally creates a
‘getter’ function for the variable, accessible through an external call such as
contract.beneficiary().

Now, the constructor.

22# `_bidding_time` seconds bidding time on behalf of the
23# beneficiary address `_beneficiary`.
24@deploy
25def __init__(_beneficiary: address, _auction_start: uint256, _bidding_time: uint256):
26 self.beneficiary = _beneficiary
27 self.auctionStart = _auction_start # auction start time can be in the past, present or future

The contract is initialized with three arguments: _beneficiary of type
address, _auction_start with type uint256 and _bidding_time with
type uint256, the time difference between the start and end of the auction. We
then store these three pieces of information into the contract variables
self.beneficiary, self.auctionStart and self.auctionEnd respectively.
Notice that we have access to the current time by calling block.timestamp.
block is an object available within any Vyper contract and provides information
about the block at the time of calling. Similar to block, another important object
available to us within the contract is msg, which provides information on the method
caller as we will soon see.

With initial setup out of the way, lets look at how our users can make bids.

33# The value will only be refunded if the
34# auction is not won.
35@external
36@payable
37def bid():
38 # Check if bidding period has started.
39 assert block.timestamp >= self.auctionStart
40 # Check if bidding period is over.
41 assert block.timestamp < self.auctionEnd
42 # Check if bid is high enough
43 assert msg.value > self.highestBid
44 # Track the refund for the previous high bidder
45 self.pendingReturns[self.highestBidder] += self.highestBid
46 # Track new high bid

The @payable decorator will allow a user to send some ether to the
contract in order to call the decorated method. In this case, a user wanting
to make a bid would call the bid() method while sending an amount equal
to their desired bid (not including gas fees). When calling any method within a
contract, we are provided with a built-in variable msg and we can access
the public address of any method caller with msg.sender. Similarly, the
amount of ether a user sends can be accessed by calling msg.value.

Here, we first check whether the current time is within the bidding period by
comparing with the auction’s start and end times using the assert function
which takes any boolean statement. We also check to see if the new bid is greater
than the highest bid. If the three assert statements pass, we can safely continue
to the next lines; otherwise, the bid() method will throw an error and revert the
transaction. If the two assert statements and the check that the previous bid is
not equal to zero pass, we can safely conclude that we have a valid new highest bid.
We will send back the previous highestBid to the previous highestBidder and set
our new highestBid and highestBidder.

60# End the auction and send the highest bid
61# to the beneficiary.
62@external
63def endAuction():
64 # It is a good guideline to structure functions that interact
65 # with other contracts (i.e. they call functions or send Ether)
66 # into three phases:
67 # 1. checking conditions
68 # 2. performing actions (potentially changing conditions)
69 # 3. interacting with other contracts
70 # If these phases are mixed up, the other contract could call
71 # back into the current contract and modify the state or cause
72 # effects (Ether payout) to be performed multiple times.
73 # If functions called internally include interaction with external
74 # contracts, they also have to be considered interaction with
75 # external contracts.
76
77 # 1. Conditions
78 # Check if auction endtime has been reached
79 assert block.timestamp >= self.auctionEnd
80 # Check if this function has already been called
81 assert not self.ended
82
83 # 2. Effects
84 self.ended = True

With the endAuction() method, we check whether our current time is past
the auctionEnd time we set upon initialization of the contract. We also
check that self.ended had not previously been set to True. We do this
to prevent any calls to the method if the auction had already ended,
which could potentially be malicious if the check had not been made.
We then officially end the auction by setting self.ended to True
and sending the highest bid amount to the beneficiary.

And there you have it - an open auction contract. Of course, this is a
simplified example with barebones functionality and can be improved.
Hopefully, this has provided some insight into the possibilities of Vyper.
As we move on to exploring more complex examples, we will encounter more
design patterns and features of the Vyper language.

And of course, no smart contract tutorial is complete without a note on
security.

Note

It’s always important to keep security in mind when designing a smart
contract. As any application becomes more complex, the greater the potential for
introducing new risks. Thus, it’s always good practice to keep contracts as
readable and simple as possible.

Whenever you’re ready, let’s turn it up a notch in the next example.

Blind Auction

Before we dive into our other examples, let’s briefly explore another type of
auction that you can build with Vyper. Similar to its counterpart [https://solidity.readthedocs.io/en/v0.5.0/solidity-by-example.html#id2] written in
Solidity, this blind auction allows for an auction where there is no time pressure towards the end of the bidding period.

 1#pragma version >0.3.10
 2
 3# Blind Auction. Adapted to Vyper from [Solidity by Example](https://github.com/ethereum/solidity/blob/develop/docs/solidity-by-example.rst#blind-auction-1)
 4
 5struct Bid:
 6 blindedBid: bytes32
 7 deposit: uint256
 8
 9# Note: because Vyper does not allow for dynamic arrays, we have limited the
 10# number of bids that can be placed by one address to 128 in this example
 11MAX_BIDS: constant(int128) = 128
 12
 13# Event for logging that auction has ended
 14event AuctionEnded:
 15 highestBidder: address
 16 highestBid: uint256
 17
 18# Auction parameters
 19beneficiary: public(address)
 20biddingEnd: public(uint256)
 21revealEnd: public(uint256)
 22
 23# Set to true at the end of auction, disallowing any new bids
 24ended: public(bool)
 25
 26# Final auction state
 27highestBid: public(uint256)
 28highestBidder: public(address)
 29
 30# State of the bids
 31bids: HashMap[address, Bid[128]]
 32bidCounts: HashMap[address, int128]
 33
 34# Allowed withdrawals of previous bids
 35pendingReturns: HashMap[address, uint256]
 36
 37
 38# Create a blinded auction with `_biddingTime` seconds bidding time and
 39# `_revealTime` seconds reveal time on behalf of the beneficiary address
 40# `_beneficiary`.
 41@deploy
 42def __init__(_beneficiary: address, _biddingTime: uint256, _revealTime: uint256):
 43 self.beneficiary = _beneficiary
 44 self.biddingEnd = block.timestamp + _biddingTime
 45 self.revealEnd = self.biddingEnd + _revealTime
 46
 47
 48# Place a blinded bid with:
 49#
 50# _blindedBid = keccak256(concat(
 51# convert(value, bytes32),
 52# convert(fake, bytes32),
 53# secret)
 54#)
 55#
 56# The sent ether is only refunded if the bid is correctly revealed in the
 57# revealing phase. The bid is valid if the ether sent together with the bid is
 58# at least "value" and "fake" is not true. Setting "fake" to true and sending
 59# not the exact amount are ways to hide the real bid but still make the
 60# required deposit. The same address can place multiple bids.
 61@external
 62@payable
 63def bid(_blindedBid: bytes32):
 64 # Check if bidding period is still open
 65 assert block.timestamp < self.biddingEnd
 66
 67 # Check that payer hasn't already placed maximum number of bids
 68 numBids: int128 = self.bidCounts[msg.sender]
 69 assert numBids < MAX_BIDS
 70
 71 # Add bid to mapping of all bids
 72 self.bids[msg.sender][numBids] = Bid(
 73 blindedBid=_blindedBid,
 74 deposit=msg.value
 75)
 76 self.bidCounts[msg.sender] += 1
 77
 78
 79# Returns a boolean value, `True` if bid placed successfully, `False` otherwise.
 80@internal
 81def placeBid(bidder: address, _value: uint256) -> bool:
 82 # If bid is less than highest bid, bid fails
 83 if (_value <= self.highestBid):
 84 return False
 85
 86 # Refund the previously highest bidder
 87 if (self.highestBidder != empty(address)):
 88 self.pendingReturns[self.highestBidder] += self.highestBid
 89
 90 # Place bid successfully and update auction state
 91 self.highestBid = _value
 92 self.highestBidder = bidder
 93
 94 return True
 95
 96
 97# Reveal your blinded bids. You will get a refund for all correctly blinded
 98# invalid bids and for all bids except for the totally highest.
 99@external
100def reveal(_numBids: int128, _values: uint256[128], _fakes: bool[128], _secrets: bytes32[128]):
101 # Check that bidding period is over
102 assert block.timestamp > self.biddingEnd
103
104 # Check that reveal end has not passed
105 assert block.timestamp < self.revealEnd
106
107 # Check that number of bids being revealed matches log for sender
108 assert _numBids == self.bidCounts[msg.sender]
109
110 # Calculate refund for sender
111 refund: uint256 = 0
112 for i: int128 in range(MAX_BIDS):
113 # Note that loop may break sooner than 128 iterations if i >= _numBids
114 if (i >= _numBids):
115 break
116
117 # Get bid to check
118 bidToCheck: Bid = (self.bids[msg.sender])[i]
119
120 # Check against encoded packet
121 value: uint256 = _values[i]
122 fake: bool = _fakes[i]
123 secret: bytes32 = _secrets[i]
124 blindedBid: bytes32 = keccak256(concat(
125 convert(value, bytes32),
126 convert(fake, bytes32),
127 secret
128))
129
130 # Bid was not actually revealed
131 # Do not refund deposit
132 assert blindedBid == bidToCheck.blindedBid
133
134 # Add deposit to refund if bid was indeed revealed
135 refund += bidToCheck.deposit
136 if (not fake and bidToCheck.deposit >= value):
137 if (self.placeBid(msg.sender, value)):
138 refund -= value
139
140 # Make it impossible for the sender to re-claim the same deposit
141 zeroBytes32: bytes32 = empty(bytes32)
142 bidToCheck.blindedBid = zeroBytes32
143
144 # Send refund if non-zero
145 if (refund != 0):
146 send(msg.sender, refund)
147
148
149# Withdraw a bid that was overbid.
150@external
151def withdraw():
152 # Check that there is an allowed pending return.
153 pendingAmount: uint256 = self.pendingReturns[msg.sender]
154 if (pendingAmount > 0):
155 # If so, set pending returns to zero to prevent recipient from calling
156 # this function again as part of the receiving call before `transfer`
157 # returns (see the remark above about conditions -> effects ->
158 # interaction).
159 self.pendingReturns[msg.sender] = 0
160
161 # Then send return
162 send(msg.sender, pendingAmount)
163
164
165# End the auction and send the highest bid to the beneficiary.
166@external
167def auctionEnd():
168 # Check that reveal end has passed
169 assert block.timestamp > self.revealEnd
170
171 # Check that auction has not already been marked as ended
172 assert not self.ended
173
174 # Log auction ending and set flag
175 log AuctionEnded(self.highestBidder, self.highestBid)
176 self.ended = True
177
178 # Transfer funds to beneficiary
179 send(self.beneficiary, self.highestBid)

While this blind auction is almost functionally identical to the blind auction implemented in Solidity, the differences in their implementations help illustrate the differences between Solidity and Vyper.

28highestBidder: public(address)
29
30# State of the bids

One key difference is that, because Vyper does not allow for dynamic arrays, we
have limited the number of bids that can be placed by one address to 128 in this
example. Bidders who want to make more than this maximum number of bids would
need to do so from multiple addresses.

Safe Remote Purchases

In this example, we have an escrow contract implementing a system for a trustless
transaction between a buyer and a seller. In this system, a seller posts an item
for sale and makes a deposit to the contract of twice the item’s value. At
this moment, the contract has a balance of 2 * value. The seller can reclaim
the deposit and close the sale as long as a buyer has not yet made a purchase.
If a buyer is interested in making a purchase, they would make a payment and
submit an equal amount for deposit (totaling 2 * value) into the contract
and locking the contract from further modification. At this moment, the contract
has a balance of 4 * value and the seller would send the item to buyer. Upon
the buyer’s receipt of the item, the buyer will mark the item as received in the
contract, thereby returning the buyer’s deposit (not payment), releasing the
remaining funds to the seller, and completing the transaction.

There are certainly others ways of designing a secure escrow system with less
overhead for both the buyer and seller, but for the purpose of this example,
we want to explore one way how an escrow system can be implemented trustlessly.

Let’s go!

 1#pragma version >0.3.10
 2
 3# Safe Remote Purchase
 4# Originally from
 5# https://github.com/ethereum/solidity/blob/develop/docs/solidity-by-example.rst
 6# Ported to vyper and optimized.
 7
 8# Rundown of the transaction:
 9# 1. Seller posts item for sale and posts safety deposit of double the item value.
10# Balance is 2*value.
11# (1.1. Seller can reclaim deposit and close the sale as long as nothing was purchased.)
12# 2. Buyer purchases item (value) plus posts an additional safety deposit (Item value).
13# Balance is 4*value.
14# 3. Seller ships item.
15# 4. Buyer confirms receiving the item. Buyer's deposit (value) is returned.
16# Seller's deposit (2*value) + items value is returned. Balance is 0.
17
18value: public(uint256) #Value of the item
19seller: public(address)
20buyer: public(address)
21unlocked: public(bool)
22ended: public(bool)
23
24@deploy
25@payable
26def __init__():
27 assert (msg.value % 2) == 0
28 self.value = msg.value // 2 # The seller initializes the contract by
29 # posting a safety deposit of 2*value of the item up for sale.
30 self.seller = msg.sender
31 self.unlocked = True
32
33@external
34def abort():
35 assert self.unlocked #Is the contract still refundable?
36 assert msg.sender == self.seller # Only the seller can refund
37 # his deposit before any buyer purchases the item.
38 selfdestruct(self.seller) # Refunds the seller and deletes the contract.
39
40@external
41@payable
42def purchase():
43 assert self.unlocked # Is the contract still open (is the item still up
44 # for sale)?
45 assert msg.value == (2 * self.value) # Is the deposit the correct value?
46 self.buyer = msg.sender
47 self.unlocked = False
48
49@external
50def received():
51 # 1. Conditions
52 assert not self.unlocked # Is the item already purchased and pending
53 # confirmation from the buyer?
54 assert msg.sender == self.buyer
55 assert not self.ended
56
57 # 2. Effects
58 self.ended = True
59
60 # 3. Interaction
61 send(self.buyer, self.value) # Return the buyer's deposit (=value) to the buyer.
62 selfdestruct(self.seller) # Return the seller's deposit (=2*value) and the
63 # purchase price (=value) to the seller.

This is also a moderately short contract, however a little more complex in
logic. Let’s break down this contract bit by bit.

16# Seller's deposit (2*value) + items value is returned. Balance is 0.
17
18value: public(uint256) #Value of the item
19seller: public(address)

Like the other contracts, we begin by declaring our global variables public with
their respective data types. Remember that the public function allows the
variables to be readable by an external caller, but not writeable.

22ended: public(bool)
23
24@deploy
25@payable
26def __init__():
27 assert (msg.value % 2) == 0
28 self.value = msg.value // 2 # The seller initializes the contract by
29 # posting a safety deposit of 2*value of the item up for sale.

With a @payable decorator on the constructor, the contract creator will be
required to make an initial deposit equal to twice the item’s value to
initialize the contract, which will be later returned. This is in addition to
the gas fees needed to deploy the contract on the blockchain, which is not
returned. We assert that the deposit is divisible by 2 to ensure that the
seller deposited a valid amount. The constructor stores the item’s value
in the contract variable self.value and saves the contract creator into
self.seller. The contract variable self.unlocked is initialized to
True.

31 self.unlocked = True
32
33@external
34def abort():
35 assert self.unlocked #Is the contract still refundable?
36 assert msg.sender == self.seller # Only the seller can refund

The abort() method is a method only callable by the seller and while the
contract is still unlocked—meaning it is callable only prior to any buyer
making a purchase. As we will see in the purchase() method that when
a buyer calls the purchase() method and sends a valid amount to the contract,
the contract will be locked and the seller will no longer be able to call
abort().

When the seller calls abort() and if the assert statements pass, the
contract will call the selfdestruct() function and refunds the seller and
subsequently destroys the contract.

38 selfdestruct(self.seller) # Refunds the seller and deletes the contract.
39
40@external
41@payable
42def purchase():
43 assert self.unlocked # Is the contract still open (is the item still up
44 # for sale)?
45 assert msg.value == (2 * self.value) # Is the deposit the correct value?

Like the constructor, the purchase() method has a @payable decorator,
meaning it can be called with a payment. For the buyer to make a valid
purchase, we must first assert that the contract’s unlocked property is
True and that the amount sent is equal to twice the item’s value. We then
set the buyer to the msg.sender and lock the contract. At this point, the
contract has a balance equal to 4 times the item value and the seller must
send the item to the buyer.

47 self.unlocked = False
48
49@external
50def received():
51 # 1. Conditions
52 assert not self.unlocked # Is the item already purchased and pending
53 # confirmation from the buyer?
54 assert msg.sender == self.buyer
55 assert not self.ended
56
57 # 2. Effects
58 self.ended = True
59
60 # 3. Interaction
61 send(self.buyer, self.value) # Return the buyer's deposit (=value) to the buyer.

Finally, upon the buyer’s receipt of the item, the buyer can confirm their
receipt by calling the received() method to distribute the funds as
intended—where the seller receives 3/4 of the contract balance and the buyer
receives 1/4.

By calling received(), we begin by checking that the contract is indeed
locked, ensuring that a buyer had previously paid. We also ensure that this
method is only callable by the buyer. If these two assert statements pass,
we refund the buyer their initial deposit and send the seller the remaining
funds. The contract is finally destroyed and the transaction is complete.

Whenever we’re ready, let’s move on to the next example.

Crowdfund

Now, let’s explore a straightforward example for a crowdfunding contract where
prospective participants can contribute funds to a campaign. If the total
contribution to the campaign reaches or surpasses a predetermined funding goal,
the funds will be sent to the beneficiary at the end of the campaign deadline.
Participants will be refunded their respective contributions if the total
funding does not reach its target goal.

 1#pragma version >0.3.10
 2
 3###
 4## THIS IS EXAMPLE CODE, NOT MEANT TO BE USED IN PRODUCTION! CAVEAT EMPTOR!
 5###
 6
 7# example of a crowd funding contract
 8
 9funders: HashMap[address, uint256]
10beneficiary: address
11deadline: public(uint256)
12goal: public(uint256)
13timelimit: public(uint256)
14
15# Setup global variables
16@deploy
17def __init__(_beneficiary: address, _goal: uint256, _timelimit: uint256):
18 self.beneficiary = _beneficiary
19 self.deadline = block.timestamp + _timelimit
20 self.timelimit = _timelimit
21 self.goal = _goal
22
23# Participate in this crowdfunding campaign
24@external
25@payable
26def participate():
27 assert block.timestamp < self.deadline, "deadline has expired"
28
29 self.funders[msg.sender] += msg.value
30
31# Enough money was raised! Send funds to the beneficiary
32@external
33def finalize():
34 assert block.timestamp >= self.deadline, "deadline has not expired yet"
35 assert self.balance >= self.goal, "goal has not been reached"
36
37 selfdestruct(self.beneficiary)
38
39# Let participants withdraw their fund
40@external
41def refund():
42 assert block.timestamp >= self.deadline and self.balance < self.goal
43 assert self.funders[msg.sender] > 0
44
45 value: uint256 = self.funders[msg.sender]
46 self.funders[msg.sender] = 0
47
48 send(msg.sender, value)

Most of this code should be relatively straightforward after going through our
previous examples. Let’s dive right in.

 3###
 4## THIS IS EXAMPLE CODE, NOT MEANT TO BE USED IN PRODUCTION! CAVEAT EMPTOR!
 5###
 6
 7# example of a crowd funding contract
 8
 9funders: HashMap[address, uint256]
10beneficiary: address
11deadline: public(uint256)
12goal: public(uint256)
13timelimit: public(uint256)

Like other examples, we begin by initiating our variables - except this time,
we’re not calling them with the public function. Variables initiated this
way are, by default, private.

Note

Unlike the existence of the function public(), there is no equivalent
private() function. Variables simply default to private if initiated
without the public() function.

The funders variable is initiated as a mapping where the key is an address,
and the value is a number representing the contribution of each participant.
The beneficiary will be the final receiver of the funds
once the crowdfunding period is over—as determined by the deadline and
timelimit variables. The goal variable is the target total contribution
of all participants.

 9funders: HashMap[address, uint256]
10beneficiary: address
11deadline: public(uint256)
12goal: public(uint256)
13timelimit: public(uint256)
14
15# Setup global variables

Our constructor function takes 3 arguments: the beneficiary’s address, the goal
in wei value, and the difference in time from start to finish of the
crowdfunding. We initialize the arguments as contract variables with their
corresponding names. Additionally, a self.deadline is initialized to set
a definitive end time for the crowdfunding period.

Now lets take a look at how a person can participate in the crowdfund.

17def __init__(_beneficiary: address, _goal: uint256, _timelimit: uint256):
18 self.beneficiary = _beneficiary
19 self.deadline = block.timestamp + _timelimit
20 self.timelimit = _timelimit
21 self.goal = _goal
22
23# Participate in this crowdfunding campaign

Once again, we see the @payable decorator on a method, which allows a
person to send some ether along with a call to the method. In this case,
the participate() method accesses the sender’s address with msg.sender
and the corresponding amount sent with msg.value. This information is stored
into a struct and then saved into the funders mapping with
self.nextFunderIndex as the key. As more participants are added to the
mapping, self.nextFunderIndex increments appropriately to properly index
each participant.

25@payable
26def participate():
27 assert block.timestamp < self.deadline, "deadline has expired"
28
29 self.funders[msg.sender] += msg.value
30
31# Enough money was raised! Send funds to the beneficiary

The finalize() method is used to complete the crowdfunding process. However,
to complete the crowdfunding, the method first checks to see if the crowdfunding
period is over and that the balance has reached/passed its set goal. If those
two conditions pass, the contract calls the selfdestruct() function and
sends the collected funds to the beneficiary.

Note

Notice that we have access to the total amount sent to the contract by
calling self.balance, a variable we never explicitly set. Similar to msg
and block, self.balance is a built-in variable that’s available in all
Vyper contracts.

We can finalize the campaign if all goes well, but what happens if the
crowdfunding campaign isn’t successful? We’re going to need a way to refund
all the participants.

33def finalize():
34 assert block.timestamp >= self.deadline, "deadline has not expired yet"
35 assert self.balance >= self.goal, "goal has not been reached"
36
37 selfdestruct(self.beneficiary)
38
39# Let participants withdraw their fund
40@external
41def refund():
42 assert block.timestamp >= self.deadline and self.balance < self.goal

In the refund() method, we first check that the crowdfunding period is
indeed over and that the total collected balance is less than the goal with
the assert statement . If those two conditions pass, we let users get their
funds back using the withdraw pattern.

Voting

In this contract, we will implement a system for participants to vote on a list
of proposals. The chairperson of the contract will be able to give each
participant the right to vote, and each participant may choose to vote, or
delegate their vote to another voter. Finally, a winning proposal will be
determined upon calling the winningProposals() method, which iterates through
all the proposals and returns the one with the greatest number of votes.

 1#pragma version >0.3.10
 2
 3# Voting with delegation.
 4
 5# Information about voters
 6struct Voter:
 7 # weight is accumulated by delegation
 8 weight: int128
 9 # if true, that person already voted (which includes voting by delegating)
 10 voted: bool
 11 # person delegated to
 12 delegate: address
 13 # index of the voted proposal, which is not meaningful unless `voted` is True.
 14 vote: int128
 15
 16# Users can create proposals
 17struct Proposal:
 18 # short name (up to 32 bytes)
 19 name: bytes32
 20 # number of accumulated votes
 21 voteCount: int128
 22
 23voters: public(HashMap[address, Voter])
 24proposals: public(HashMap[int128, Proposal])
 25voterCount: public(int128)
 26chairperson: public(address)
 27int128Proposals: public(int128)
 28
 29
 30@view
 31@internal
 32def _delegated(addr: address) -> bool:
 33 return self.voters[addr].delegate != empty(address)
 34
 35
 36@view
 37@external
 38def delegated(addr: address) -> bool:
 39 return self._delegated(addr)
 40
 41
 42@view
 43@internal
 44def _directlyVoted(addr: address) -> bool:
 45 return self.voters[addr].voted and (self.voters[addr].delegate == empty(address))
 46
 47
 48@view
 49@external
 50def directlyVoted(addr: address) -> bool:
 51 return self._directlyVoted(addr)
 52
 53
 54# Setup global variables
 55@deploy
 56def __init__(_proposalNames: bytes32[2]):
 57 self.chairperson = msg.sender
 58 self.voterCount = 0
 59 for i: int128 in range(2):
 60 self.proposals[i] = Proposal(
 61 name=_proposalNames[i],
 62 voteCount=0
 63)
 64 self.int128Proposals += 1
 65
 66# Give a `voter` the right to vote on this ballot.
 67# This may only be called by the `chairperson`.
 68@external
 69def giveRightToVote(voter: address):
 70 # Throws if the sender is not the chairperson.
 71 assert msg.sender == self.chairperson
 72 # Throws if the voter has already voted.
 73 assert not self.voters[voter].voted
 74 # Throws if the voter's voting weight isn't 0.
 75 assert self.voters[voter].weight == 0
 76 self.voters[voter].weight = 1
 77 self.voterCount += 1
 78
 79# Used by `delegate` below, callable externally via `forwardWeight`
 80@internal
 81def _forwardWeight(delegate_with_weight_to_forward: address):
 82 assert self._delegated(delegate_with_weight_to_forward)
 83 # Throw if there is nothing to do:
 84 assert self.voters[delegate_with_weight_to_forward].weight > 0
 85
 86 target: address = self.voters[delegate_with_weight_to_forward].delegate
 87 for i: int128 in range(4):
 88 if self._delegated(target):
 89 target = self.voters[target].delegate
 90 # The following effectively detects cycles of length <= 5,
 91 # in which the delegation is given back to the delegator.
 92 # This could be done for any int128ber of loops,
 93 # or even infinitely with a while loop.
 94 # However, cycles aren't actually problematic for correctness;
 95 # they just result in spoiled votes.
 96 # So, in the production version, this should instead be
 97 # the responsibility of the contract's client, and this
 98 # check should be removed.
 99 assert target != delegate_with_weight_to_forward
100 else:
101 # Weight will be moved to someone who directly voted or
102 # hasn't voted.
103 break
104
105 weight_to_forward: int128 = self.voters[delegate_with_weight_to_forward].weight
106 self.voters[delegate_with_weight_to_forward].weight = 0
107 self.voters[target].weight += weight_to_forward
108
109 if self._directlyVoted(target):
110 self.proposals[self.voters[target].vote].voteCount += weight_to_forward
111 self.voters[target].weight = 0
112
113 # To reiterate: if target is also a delegate, this function will need
114 # to be called again, similarly to as above.
115
116# Public function to call _forwardWeight
117@external
118def forwardWeight(delegate_with_weight_to_forward: address):
119 self._forwardWeight(delegate_with_weight_to_forward)
120
121# Delegate your vote to the voter `to`.
122@external
123def delegate(to: address):
124 # Throws if the sender has already voted
125 assert not self.voters[msg.sender].voted
126 # Throws if the sender tries to delegate their vote to themselves or to
127 # the default address value of 0x00
128 # (the latter might not be problematic, but I don't want to think about it).
129 assert to != msg.sender
130 assert to != empty(address)
131
132 self.voters[msg.sender].voted = True
133 self.voters[msg.sender].delegate = to
134
135 # This call will throw if and only if this delegation would cause a loop
136 # of length <= 5 that ends up delegating back to the delegator.
137 self._forwardWeight(msg.sender)
138
139# Give your vote (including votes delegated to you)
140# to proposal `proposals[proposal].name`.
141@external
142def vote(proposal: int128):
143 # can't vote twice
144 assert not self.voters[msg.sender].voted
145 # can only vote on legitimate proposals
146 assert proposal < self.int128Proposals
147
148 self.voters[msg.sender].vote = proposal
149 self.voters[msg.sender].voted = True
150
151 # transfer msg.sender's weight to proposal
152 self.proposals[proposal].voteCount += self.voters[msg.sender].weight
153 self.voters[msg.sender].weight = 0
154
155# Computes the winning proposal taking all
156# previous votes into account.
157@view
158@internal
159def _winningProposal() -> int128:
160 winning_vote_count: int128 = 0
161 winning_proposal: int128 = 0
162 for i: int128 in range(2):
163 if self.proposals[i].voteCount > winning_vote_count:
164 winning_vote_count = self.proposals[i].voteCount
165 winning_proposal = i
166 return winning_proposal
167
168@view
169@external
170def winningProposal() -> int128:
171 return self._winningProposal()
172
173
174# Calls winningProposal() function to get the index
175# of the winner contained in the proposals array and then
176# returns the name of the winner
177@view
178@external
179def winnerName() -> bytes32:
180 return self.proposals[self._winningProposal()].name

As we can see, this is the contract of moderate length which we will dissect
section by section. Let’s begin!

 3# Voting with delegation.
 4
 5# Information about voters
 6struct Voter:
 7 # weight is accumulated by delegation
 8 weight: int128
 9 # if true, that person already voted (which includes voting by delegating)
10 voted: bool
11 # person delegated to
12 delegate: address
13 # index of the voted proposal, which is not meaningful unless `voted` is True.
14 vote: int128
15
16# Users can create proposals
17struct Proposal:
18 # short name (up to 32 bytes)
19 name: bytes32
20 # number of accumulated votes
21 voteCount: int128
22
23voters: public(HashMap[address, Voter])
24proposals: public(HashMap[int128, Proposal])
25voterCount: public(int128)

The variable voters is initialized as a mapping where the key is
the voter’s public address and the value is a struct describing the
voter’s properties: weight, voted, delegate, and vote, along
with their respective data types.

Similarly, the proposals variable is initialized as a public mapping
with int128 as the key’s datatype and a struct to represent each proposal
with the properties name and vote_count. Like our last example, we can
access any value by key’ing into the mapping with a number just as one would
with an index in an array.

Then, voterCount and chairperson are initialized as public with
their respective datatypes.

Let’s move onto the constructor.

53# Setup global variables
54@deploy
55def __init__(_proposalNames: bytes32[2]):
56 self.chairperson = msg.sender
57 self.voterCount = 0
58 for i: int128 in range(2):
59 self.proposals[i] = Proposal(
60 name=_proposalNames[i],
61 voteCount=0

In the constructor, we hard-coded the contract to accept an
array argument of exactly two proposal names of type bytes32 for the contracts
initialization. Because upon initialization, the __init__() method is called
by the contract creator, we have access to the contract creator’s address with
msg.sender and store it in the contract variable self.chairperson. We
also initialize the contract variable self.voter_count to zero to initially
represent the number of votes allowed. This value will be incremented as each
participant in the contract is given the right to vote by the method
giveRightToVote(), which we will explore next. We loop through the two
proposals from the argument and insert them into proposals mapping with
their respective index in the original array as its key.

Now that the initial setup is done, lets take a look at the functionality.

66# Give a `voter` the right to vote on this ballot.
67# This may only be called by the `chairperson`.
68@external
69def giveRightToVote(voter: address):
70 # Throws if the sender is not the chairperson.
71 assert msg.sender == self.chairperson
72 # Throws if the voter has already voted.
73 assert not self.voters[voter].voted
74 # Throws if the voter's voting weight isn't 0.
75 assert self.voters[voter].weight == 0

Note

Throughout this contract, we use a pattern where @external functions return data from @internal functions that have the same name prepended with an underscore. This is because Vyper does not allow calls between external functions within the same contract. The internal function handles the logic and allows internal access, while the external function acts as a getter to allow external viewing.

We need a way to control who has the ability to vote. The method
giveRightToVote() is a method callable by only the chairperson by taking
a voter address and granting it the right to vote by incrementing the voter’s
weight property. We sequentially check for 3 conditions using assert.
The assert not function will check for falsy boolean values -
in this case, we want to know that the voter has not already voted. To represent
voting power, we will set their weight to 1 and we will keep track of the
total number of voters by incrementing voterCount.

120# Delegate your vote to the voter `to`.
121@external
122def delegate(to: address):
123 # Throws if the sender has already voted
124 assert not self.voters[msg.sender].voted
125 # Throws if the sender tries to delegate their vote to themselves or to
126 # the default address value of 0x00
127 # (the latter might not be problematic, but I don't want to think about it).
128 assert to != msg.sender
129 assert to != empty(address)
130
131 self.voters[msg.sender].voted = True
132 self.voters[msg.sender].delegate = to
133
134 # This call will throw if and only if this delegation would cause a loop

In the method delegate, firstly, we check to see that msg.sender has not
already voted and secondly, that the target delegate and the msg.sender are
not the same. Voters shouldn’t be able to delegate votes to themselves. We,
then, loop through all the voters to determine whether the person delegate to
had further delegated their vote to someone else in order to follow the
chain of delegation. We then mark the msg.sender as having voted if they
delegated their vote. We increment the proposal’s voterCount directly if
the delegate had already voted or increase the delegate’s vote weight
if the delegate has not yet voted.

139# Give your vote (including votes delegated to you)
140# to proposal `proposals[proposal].name`.
141@external
142def vote(proposal: int128):
143 # can't vote twice
144 assert not self.voters[msg.sender].voted
145 # can only vote on legitimate proposals
146 assert proposal < self.int128Proposals
147
148 self.voters[msg.sender].vote = proposal
149 self.voters[msg.sender].voted = True
150
151 # transfer msg.sender's weight to proposal

Now, let’s take a look at the logic inside the vote() method, which is
surprisingly simple. The method takes the key of the proposal in the proposals
mapping as an argument, check that the method caller had not already voted,
sets the voter’s vote property to the proposal key, and increments the
proposals voteCount by the voter’s weight.

With all the basic functionality complete, what’s left is simply returning
the winning proposal. To do this, we have two methods: winningProposal(),
which returns the key of the proposal, and winnerName(), returning the
name of the proposal. Notice the @view decorator on these two methods.
We do this because the two methods only read the blockchain state and do not
modify it. Remember, reading the blockchain state is free; modifying the state
costs gas. By having the @view decorator, we let the EVM know that this
is a read-only function and we benefit by saving gas fees.

153 self.voters[msg.sender].weight = 0
154
155# Computes the winning proposal taking all
156# previous votes into account.
157@view
158@internal
159def _winningProposal() -> int128:
160 winning_vote_count: int128 = 0
161 winning_proposal: int128 = 0
162 for i: int128 in range(2):
163 if self.proposals[i].voteCount > winning_vote_count:
164 winning_vote_count = self.proposals[i].voteCount
165 winning_proposal = i
166 return winning_proposal
167
168@view
169@external
170def winningProposal() -> int128:

The _winningProposal() method returns the key of proposal in the proposals
mapping. We will keep track of greatest number of votes and the winning
proposal with the variables winningVoteCount and winningProposal,
respectively by looping through all the proposals.

winningProposal() is an external function allowing access to _winningProposal().

175# of the winner contained in the proposals array and then
176# returns the name of the winner
177@view
178@external

And finally, the winnerName() method returns the name of the proposal by
key’ing into the proposals mapping with the return result of the
winningProposal() method.

And there you have it - a voting contract. Currently, many transactions
are needed to assign the rights to vote to all participants. As an exercise,
can we try to optimize this?

Now that we’re familiar with basic contracts. Let’s step up the difficulty.

Company Stock

This contract is just a tad bit more thorough than the ones we’ve previously
encountered. In this example, we are going to look at a comprehensive contract
that manages the holdings of all shares of a company. The contract allows for
a person to buy, sell and transfer shares of a company as well as allowing for
the company to pay a person in ether. The company, upon initialization of the
contract, holds all shares of the company at first but can sell them all.

Let’s get started.

 1#pragma version >0.3.10
 2
 3# Financial events the contract logs
 4
 5event Transfer:
 6 sender: indexed(address)
 7 receiver: indexed(address)
 8 value: uint256
 9
 10event Buy:
 11 buyer: indexed(address)
 12 buy_order: uint256
 13
 14event Sell:
 15 seller: indexed(address)
 16 sell_order: uint256
 17
 18event Pay:
 19 vendor: indexed(address)
 20 amount: uint256
 21
 22
 23# Initiate the variables for the company and it's own shares.
 24company: public(address)
 25totalShares: public(uint256)
 26price: public(uint256)
 27
 28# Store a ledger of stockholder holdings.
 29holdings: HashMap[address, uint256]
 30
 31# Set up the company.
 32@deploy
 33def __init__(_company: address, _total_shares: uint256, initial_price: uint256):
 34 assert _total_shares > 0
 35 assert initial_price > 0
 36
 37 self.company = _company
 38 self.totalShares = _total_shares
 39 self.price = initial_price
 40
 41 # The company holds all the shares at first, but can sell them all.
 42 self.holdings[self.company] = _total_shares
 43
 44# Public function to allow external access to _stockAvailable
 45@view
 46@external
 47def stockAvailable() -> uint256:
 48 return self._stockAvailable()
 49
 50# Give some value to the company and get stock in return.
 51@external
 52@payable
 53def buyStock():
 54 # Note: full amount is given to company (no fractional shares),
 55 # so be sure to send exact amount to buy shares
 56 buy_order: uint256 = msg.value // self.price # rounds down
 57
 58 # Check that there are enough shares to buy.
 59 assert self._stockAvailable() >= buy_order
 60
 61 # Take the shares off the market and give them to the stockholder.
 62 self.holdings[self.company] -= buy_order
 63 self.holdings[msg.sender] += buy_order
 64
 65 # Log the buy event.
 66 log Buy(msg.sender, buy_order)
 67
 68# Public function to allow external access to _getHolding
 69@view
 70@external
 71def getHolding(_stockholder: address) -> uint256:
 72 return self._getHolding(_stockholder)
 73
 74# Return the amount the company has on hand in cash.
 75@view
 76@external
 77def cash() -> uint256:
 78 return self.balance
 79
 80# Give stock back to the company and get money back as ETH.
 81@external
 82def sellStock(sell_order: uint256):
 83 assert sell_order > 0 # Otherwise, this would fail at send() below,
 84 # due to an OOG error (there would be zero value available for gas).
 85 # You can only sell as much stock as you own.
 86 assert self._getHolding(msg.sender) >= sell_order
 87 # Check that the company can pay you.
 88 assert self.balance >= (sell_order * self.price)
 89
 90 # Sell the stock, send the proceeds to the user
 91 # and put the stock back on the market.
 92 self.holdings[msg.sender] -= sell_order
 93 self.holdings[self.company] += sell_order
 94 send(msg.sender, sell_order * self.price)
 95
 96 # Log the sell event.
 97 log Sell(msg.sender, sell_order)
 98
 99# Transfer stock from one stockholder to another. (Assume that the
100# receiver is given some compensation, but this is not enforced.)
101@external
102def transferStock(receiver: address, transfer_order: uint256):
103 assert transfer_order > 0 # This is similar to sellStock above.
104 # Similarly, you can only trade as much stock as you own.
105 assert self._getHolding(msg.sender) >= transfer_order
106
107 # Debit the sender's stock and add to the receiver's address.
108 self.holdings[msg.sender] -= transfer_order
109 self.holdings[receiver] += transfer_order
110
111 # Log the transfer event.
112 log Transfer(msg.sender, receiver, transfer_order)
113
114# Allow the company to pay someone for services rendered.
115@external
116def payBill(vendor: address, amount: uint256):
117 # Only the company can pay people.
118 assert msg.sender == self.company
119 # Also, it can pay only if there's enough to pay them with.
120 assert self.balance >= amount
121
122 # Pay the bill!
123 send(vendor, amount)
124
125 # Log the payment event.
126 log Pay(vendor, amount)
127
128# Public function to allow external access to _debt
129@view
130@external
131def debt() -> uint256:
132 return self._debt()
133
134# Return the cash holdings minus the debt of the company.
135# The share debt or liability only is included here,
136# but of course all other liabilities can be included.
137@view
138@external
139def worth() -> uint256:
140 return self.balance - self._debt()
141
142# Return the amount in wei that a company has raised in stock offerings.
143@view
144@internal
145def _debt() -> uint256:
146 return (self.totalShares - self._stockAvailable()) * self.price
147
148# Find out how much stock the company holds
149@view
150@internal
151def _stockAvailable() -> uint256:
152 return self.holdings[self.company]
153
154# Find out how much stock any address (that's owned by someone) has.
155@view
156@internal
157def _getHolding(_stockholder: address) -> uint256:
158 return self.holdings[_stockholder]

Note

Throughout this contract, we use a pattern where @external functions return data from @internal functions that have the same name prepended with an underscore. This is because Vyper does not allow calls between external functions within the same contract. The internal function handles the logic, while the external function acts as a getter to allow viewing.

The contract contains a number of methods that modify the contract state as
well as a few ‘getter’ methods to read it. We first declare several events
that the contract logs. We then declare our global variables, followed by
function definitions.

 3# Financial events the contract logs
 4
 5event Transfer:
 6 sender: indexed(address)
 7 receiver: indexed(address)
 8 value: uint256
 9
10event Buy:
11 buyer: indexed(address)
12 buy_order: uint256
13
14event Sell:
15 seller: indexed(address)
16 sell_order: uint256
17
18event Pay:
19 vendor: indexed(address)
20 amount: uint256
21
22
23# Initiate the variables for the company and it's own shares.
24company: public(address)
25totalShares: public(uint256)
26price: public(uint256)

We initiate the company variable to be of type address that’s public.
The totalShares variable is of type uint256, which in this case
represents the total available shares of the company. The price variable
represents the wei value of a share and holdings is a mapping that maps an
address to the number of shares the address owns.

29holdings: HashMap[address, uint256]
30
31# Set up the company.
32@deploy
33def __init__(_company: address, _total_shares: uint256, initial_price: uint256):
34 assert _total_shares > 0
35 assert initial_price > 0
36
37 self.company = _company
38 self.totalShares = _total_shares
39 self.price = initial_price

In the constructor, we set up the contract to check for valid inputs during
the initialization of the contract via the two assert statements. If the
inputs are valid, the contract variables are set accordingly and the
company’s address is initialized to hold all shares of the company in the
holdings mapping.

42 self.holdings[self.company] = _total_shares
43
44# Public function to allow external access to _stockAvailable
45@view
46@external

We will be seeing a few @view decorators in this contract—which is
used to decorate methods that simply read the contract state or return a simple
calculation on the contract state without modifying it. Remember, reading the
blockchain is free, writing on it is not. Since Vyper is a statically typed
language, we see an arrow following the definition of the _stockAvailable()
method, which simply represents the data type which the function is expected
to return. In the method, we simply key into self.holdings with the
company’s address and check it’s holdings. Because _stockAvailable() is an
internal method, we also include the stockAvailable() method to allow
external access.

Now, lets take a look at a method that lets a person buy stock from the
company’s holding.

51@external
52@payable
53def buyStock():
54 # Note: full amount is given to company (no fractional shares),
55 # so be sure to send exact amount to buy shares
56 buy_order: uint256 = msg.value // self.price # rounds down
57
58 # Check that there are enough shares to buy.
59 assert self._stockAvailable() >= buy_order
60
61 # Take the shares off the market and give them to the stockholder.
62 self.holdings[self.company] -= buy_order
63 self.holdings[msg.sender] += buy_order

The buyStock() method is a @payable method which takes an amount of
ether sent and calculates the buyOrder (the stock value equivalence at
the time of call). The number of shares is deducted from the company’s holdings
and transferred to the sender’s in the holdings mapping.

Now that people can buy shares, how do we check someone’s holdings?

66 log Buy(msg.sender, buy_order)
67
68# Public function to allow external access to _getHolding
69@view
70@external
71def getHolding(_stockholder: address) -> uint256:

The _getHolding() is another @view method that takes an address
and returns its corresponding stock holdings by keying into self.holdings.
Again, an external function getHolding() is included to allow access.

72 return self._getHolding(_stockholder)
73
74# Return the amount the company has on hand in cash.
75@view
76@external

To check the ether balance of the company, we can simply call the getter method
cash().

78 return self.balance
79
80# Give stock back to the company and get money back as ETH.
81@external
82def sellStock(sell_order: uint256):
83 assert sell_order > 0 # Otherwise, this would fail at send() below,
84 # due to an OOG error (there would be zero value available for gas).
85 # You can only sell as much stock as you own.
86 assert self._getHolding(msg.sender) >= sell_order
87 # Check that the company can pay you.
88 assert self.balance >= (sell_order * self.price)
89
90 # Sell the stock, send the proceeds to the user
91 # and put the stock back on the market.
92 self.holdings[msg.sender] -= sell_order
93 self.holdings[self.company] += sell_order
94 send(msg.sender, sell_order * self.price)

To sell a stock, we have the sellStock() method which takes a number of
stocks a person wishes to sell, and sends the equivalent value in ether to the
seller’s address. We first assert that the number of stocks the person
wishes to sell is a value greater than 0. We also assert to see that
the user can only sell as much as the user owns and that the company has enough
ether to complete the sale. If all conditions are met, the holdings are deducted
from the seller and given to the company. The ethers are then sent to the seller.

 97 log Sell(msg.sender, sell_order)
 98
 99# Transfer stock from one stockholder to another. (Assume that the
100# receiver is given some compensation, but this is not enforced.)
101@external
102def transferStock(receiver: address, transfer_order: uint256):
103 assert transfer_order > 0 # This is similar to sellStock above.
104 # Similarly, you can only trade as much stock as you own.
105 assert self._getHolding(msg.sender) >= transfer_order
106
107 # Debit the sender's stock and add to the receiver's address.
108 self.holdings[msg.sender] -= transfer_order
109 self.holdings[receiver] += transfer_order

A stockholder can also transfer their stock to another stockholder with the
transferStock() method. The method takes a receiver address and the number
of shares to send. It first asserts that the amount being sent is greater
than 0 and asserts whether the sender has enough stocks to send. If
both conditions are satisfied, the transfer is made.

112 log Transfer(msg.sender, receiver, transfer_order)
113
114# Allow the company to pay someone for services rendered.
115@external
116def payBill(vendor: address, amount: uint256):
117 # Only the company can pay people.
118 assert msg.sender == self.company
119 # Also, it can pay only if there's enough to pay them with.
120 assert self.balance >= amount
121
122 # Pay the bill!
123 send(vendor, amount)

The company is also allowed to pay out an amount in ether to an address by
calling the payBill() method. This method should only be callable by the
company and thus first checks whether the method caller’s address matches that
of the company. Another important condition to check is that the company has
enough funds to pay the amount. If both conditions satisfy, the contract
sends its ether to an address.

126 log Pay(vendor, amount)
127
128# Public function to allow external access to _debt
129@view
130@external

We can also check how much the company has raised by multiplying the number of
shares the company has sold and the price of each share. Internally, we get
this value by calling the _debt() method. Externally it is accessed via debt().

132 return self._debt()
133
134# Return the cash holdings minus the debt of the company.
135# The share debt or liability only is included here,
136# but of course all other liabilities can be included.
137@view
138@external

Finally, in this worth() method, we can check the worth of a company by
subtracting its debt from its ether balance.

This contract has been the most thorough example so far in terms of its
functionality and features. Yet despite the thoroughness of such a contract, the
logic remained simple. Hopefully, by now, the Vyper language has convinced you
of its capabilities and readability in writing smart contracts.

Structure of a Contract

Vyper contracts are contained within files. Each file contains exactly one contract.

This section provides a quick overview of the types of data present within a contract, with links to other sections where you can obtain more details.

Pragmas

Vyper supports several source code directives to control compiler modes and help with build reproducibility.

Version Pragma

The version pragma ensures that a contract is only compiled by the intended compiler version, or range of versions. Version strings use NPM [https://docs.npmjs.com/about-semantic-versioning] style syntax. Starting from v0.4.0 and up, version strings will use PEP440 version specifiers [https://peps.python.org/pep-0440/#version-specifiers].

As of 0.3.10, the recommended way to specify the version pragma is as follows:

#pragma version ^0.3.0

Note

Both pragma directive versions #pragma and # pragma are supported.

The following declaration is equivalent, and, prior to 0.3.10, was the only supported method to specify the compiler version:

@version ^0.3.0

In the above examples, the contract will only compile with Vyper versions 0.3.x.

Optimization Mode

The optimization mode can be one of "none", "codesize", or "gas" (default). For example, adding the following line to a contract will cause it to try to optimize for codesize:

#pragma optimize codesize

The optimization mode can also be set as a compiler option, which is documented in Compiler Optimization Modes. If the compiler option conflicts with the source code pragma, an exception will be raised and compilation will not continue.

EVM Version

The EVM version can be set with the evm-version pragma, which is documented in Setting the Target EVM Version.

State Variables

State variables are values which are permanently stored in contract storage. They are declared outside of the body of any functions, and initially contain the default value for their type.

storedData: int128

State variables are accessed via the self object.

self.storedData = 123

See the documentation on Types or Scoping and Declarations for more information.

Functions

Functions are executable units of code within a contract.

@external
def bid():
 ...

Functions may be called internally or externally depending on their visibility. Functions may accept input arguments and return variables in order to pass values between them.

See the Functions documentation for more information.

Events

Events provide an interface for the EVM’s logging facilities. Events may be logged with specially indexed data structures that allow clients, including light clients, to efficiently search for them.

event Payment:
 amount: int128
 sender: indexed(address)

total_paid: int128

@external
@payable
def pay():
 self.total_paid += msg.value
 log Payment(msg.value, msg.sender)

See the Event documentation for more information.

Interfaces

An interface is a set of function definitions used to enable calls between smart contracts. A contract interface defines all of that contract’s externally available functions. By importing the interface, your contract now knows how to call these functions in other contracts.

Interfaces can be added to contracts either through inline definition, or by importing them from a separate file.

interface FooBar:
 def calculate() -> uint256: view
 def test1(): nonpayable

from foo import FooBar

Once defined, an interface can then be used to make external calls to a given address:

@external
def test(some_address: address):
 FooBar(some_address).calculate()

See the Interfaces documentation for more information.

Structs

A struct is a custom defined type that allows you to group several variables together:

struct MyStruct:
 value1: int128
 value2: decimal

See the Structs documentation for more information.

Types

Vyper is a statically typed language. The type of each variable (state and local) must be specified or at least known at compile-time. Vyper provides several elementary types which can be combined to form complex types.

In addition, types can interact with each other in expressions containing operators.

Value Types

The following types are also called value types because variables of these
types will always be passed by value, i.e. they are always copied when they
are used as function arguments or in assignments.

Boolean

Keyword: bool

A boolean is a type to store a logical/truth value.

Values

The only possible values are the constants True and False.

Operators

	Operator

	Description

	not x

	Logical negation

	x and y

	Logical conjunction

	x or y

	Logical disjunction

	x == y

	Equality

	x != y

	Inequality

Short-circuiting of boolean operators (or and and) is consistent with
the behavior of Python.

Signed Integer (N bit)

Keyword: intN (e.g., int128)

A signed integer which can store positive and negative integers. N must be a multiple of 8 between 8 and 256 (inclusive).

Values

Signed integer values between -2N-1 and (2N-1 - 1), inclusive.

Integer literals cannot have a decimal point even if the decimal value is zero. For example, 2.0 cannot be interpreted as an integer.

Operators

Comparisons

Comparisons return a boolean value.

	Operator

	Description

	x < y

	Less than

	x <= y

	Less than or equal to

	x == y

	Equals

	x != y

	Does not equal

	x >= y

	Greater than or equal to

	x > y

	Greater than

x and y must both be of the same type.

Arithmetic Operators

	Operator

	Description

	x + y

	Addition

	x - y

	Subtraction

	-x

	Unary minus/Negation

	x * y

	Multiplication

	x // y

	Integer division

	x**y

	Exponentiation

	x % y

	Modulo

x and y must both be of the same type.

Bitwise Operators

	Operator

	Description

	x & y

	Bitwise and

	x | y

	Bitwise or

	x ^ y

	Bitwise xor

x and y must be of the same type.

Shifts

	Operator

	Description

	x << y

	Left shift

	x >> y

	Right shift

Shifting is only available for 256-bit wide types. That is, x must be int256, and y can be any unsigned integer. The right shift for int256 compiles to a signed right shift (EVM SAR instruction).

Note

While at runtime shifts are unchecked (that is, they can be for any number of bits), to prevent common mistakes, the compiler is stricter at compile-time and will prevent out of bounds shifts. For instance, at runtime, 1 << 257 will evaluate to 0, while that expression at compile-time will raise an OverflowException.

Note

Integer division has different rounding semantics than Python for negative numbers: Vyper rounds towards zero, while Python rounds towards negative infinity. For example, -1 // 2 will return -1 in Python, but 0 in Vyper. This preserves the spirit (but not the text!) of the reasoning for Python’s round-towards-negative-infinity behavior, which is that the behavior of // combined with the behavior of % preserves the following identity no matter if the quantities are negative or non-negative: (x // y) * y + (x % y) == x.

Unsigned Integer (N bit)

Keyword: uintN (e.g., uint8)

A unsigned integer which can store positive integers. N must be a multiple of 8 between 8 and 256 (inclusive).

Values

Integer values between 0 and (2N-1).

Integer literals cannot have a decimal point even if the decimal value is zero. For example, 2.0 cannot be interpreted as an integer.

Note

Integer literals are interpreted as int256 by default. In cases where uint8 is more appropriate, such as assignment, the literal might be interpreted as uint8. Example: _variable: uint8 = _literal. In order to explicitly cast a literal to a uint8 use convert(_literal, uint8).

Operators

Comparisons

Comparisons return a boolean value.

	Operator

	Description

	x < y

	Less than

	x <= y

	Less than or equal to

	x == y

	Equals

	x != y

	Does not equal

	x >= y

	Greater than or equal to

	x > y

	Greater than

x and y must be of the same type.

Arithmetic Operators

	Operator

	Description

	x + y

	Addition

	x - y

	Subtraction

	x * y

	Multiplication

	x // y

	Integer division

	x**y

	Exponentiation

	x % y

	Modulo

x and y must be of the same type.

Bitwise Operators

	Operator

	Description

	x & y

	Bitwise and

	x | y

	Bitwise or

	x ^ y

	Bitwise xor

	~x

	Bitwise not

x and y must be of the same type.

Note

The Bitwise not operator is currently only available for uint256 type.

Shifts

	Operator

	Description

	x << y

	Left shift

	x >> y

	Right shift

Shifting is only available for 256-bit wide types. That is, x must be uint256, and y can be any unsigned integer. The right shift for uint256 compiles to a signed right shift (EVM SHR instruction).

Note

While at runtime shifts are unchecked (that is, they can be for any number of bits), to prevent common mistakes, the compiler is stricter at compile-time and will prevent out of bounds shifts. For instance, at runtime, 1 << 257 will evaluate to 0, while that expression at compile-time will raise an OverflowException.

Decimals

Keyword: decimal

A decimal is a type to store a decimal fixed point value.

Values

A value with a precision of 10 decimal places between -18707220957835557353007165858768422651595.9365500928 (-2167 / 1010) and 18707220957835557353007165858768422651595.9365500927 ((2167 - 1) / 1010).

In order for a literal to be interpreted as decimal it must include a decimal point.

The ABI type (for computing method identifiers) of decimal is int168.

Operators

Comparisons

Comparisons return a boolean value.

	Operator

	Description

	x < y

	Less than

	x <= y

	Less or equal

	x == y

	Equals

	x != y

	Does not equal

	x >= y

	Greater or equal

	x > y

	Greater than

x and y must be of the type decimal.

Arithmetic Operators

	Operator

	Description

	x + y

	Addition

	x - y

	Subtraction

	-x

	Unary minus/Negation

	x * y

	Multiplication

	x / y

	Decimal division

	x % y

	Modulo

x and y must be of the type decimal.

Address

Keyword: address

The address type holds an Ethereum address.

Values

An address type can hold an Ethereum address which equates to 20 bytes or 160 bits. Address literals must be written in hexadecimal notation with a leading 0x and must be checksummed [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md].

Members

	Member

	Type

	Description

	balance

	uint256

	Balance of an address

	codehash

	bytes32

	Keccak of code at an address, 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 if no contract is deployed (see EIP-1052 [https://eips.ethereum.org/EIPS/eip-1052])

	codesize

	uint256

	Size of code deployed at an address, in bytes

	is_contract

	bool

	Boolean indicating if a contract is deployed at an address

	code

	Bytes

	Contract bytecode

Syntax as follows: _address.<member>, where _address is of the type address and <member> is one of the above keywords.

Note

Operations such as SELFDESTRUCT and CREATE2 allow for the removal and replacement of bytecode at an address. You should never assume that values of address members will not change in the future.

Note

_address.code requires the usage of slice to explicitly extract a section of contract bytecode. If the extracted section exceeds the bounds of bytecode, this will throw. You can check the size of _address.code using _address.codesize.

M-byte-wide Fixed Size Byte Array

Keyword: bytesM
This is an M-byte-wide byte array that is otherwise similar to dynamically sized byte arrays. On an ABI level, it is annotated as bytesM (e.g., bytes32).

Example:

Declaration
hash: bytes32
Assignment
self.hash = _hash

some_method_id: bytes4 = 0x01abcdef

Operators

	Keyword

	Description

	keccak256(x)

	Return the keccak256 hash as bytes32.

	concat(x, ...)

	Concatenate multiple inputs.

	slice(x, start=_start, len=_len)

	Return a slice of _len starting at _start.

Where x is a byte array and _start as well as _len are integer values.

Byte Arrays

Keyword: Bytes

A byte array with a max size.

The syntax being Bytes[maxLen], where maxLen is an integer which denotes the maximum number of bytes.
On the ABI level the Fixed-size bytes array is annotated as bytes.

Bytes literals may be given as bytes strings.

bytes_string: Bytes[100] = b"\x01"

Strings

Keyword: String

Fixed-size strings can hold strings with equal or fewer characters than the maximum length of the string.
On the ABI level the Fixed-size bytes array is annotated as string.

example_str: String[100] = "Test String"

Flags

Keyword: flag

Flags are custom defined types. A flag must have at least one member, and can hold up to a maximum of 256 members.
The members are represented by uint256 values in the form of 2n where n is the index of the member in the range 0 <= n <= 255.

Defining a flag with two members
flag Roles:
 ADMIN
 USER

Declaring a flag variable
role: Roles = Roles.ADMIN

Returning a member
return Roles.ADMIN

Operators

Comparisons

Comparisons return a boolean value.

	Operator

	Description

	x == y

	Equals

	x != y

	Does not equal

	x in y

	x is in y

	x not in y

	x is not in y

Bitwise Operators

	Operator

	Description

	x & y

	Bitwise and

	x | y

	Bitwise or

	x ^ y

	Bitwise xor

	~x

	Bitwise not

Flag members can be combined using the above bitwise operators. While flag members have values that are power of two, flag member combinations may not.

The in and not in operators can be used in conjunction with flag member combinations to check for membership.

flag Roles:
 MANAGER
 ADMIN
 USER

Check for membership
@external
def foo(a: Roles) -> bool:
 return a in (Roles.MANAGER | Roles.USER)

Check not in
@external
def bar(a: Roles) -> bool:
 return a not in (Roles.MANAGER | Roles.USER)

Note that in is not the same as strict equality (==). in checks that any of the flags on two flag objects are simultaneously set, while == checks that two flag objects are bit-for-bit equal.

The following code uses bitwise operations to add and revoke permissions from a given Roles object.

@external
def add_user(a: Roles) -> Roles:
 ret: Roles = a
 ret |= Roles.USER # set the USER bit to 1
 return ret

@external
def revoke_user(a: Roles) -> Roles:
 ret: Roles = a
 ret &= ~Roles.USER # set the USER bit to 0
 return ret

@external
def flip_user(a: Roles) -> Roles:
 ret: Roles = a
 ret ^= Roles.USER # flip the user bit between 0 and 1
 return ret

Reference Types

Reference types are those whose components can be assigned to in-place without copying. For instance, array and struct members can be individually assigned to without overwriting the whole data structure.

Note

In terms of the calling convention, reference types are passed by value, not by reference. That means that, a calling function does not need to worry about a callee modifying the data of a passed structure.

Fixed-size Lists

Fixed-size lists hold a finite number of elements which belong to a specified type.

Lists can be declared with _name: _ValueType[_Integer], except Bytes[N], String[N] and flags.

Defining a list
exampleList: int128[3]

Setting values
exampleList = [10, 11, 12]
exampleList[2] = 42

Returning a value
return exampleList[0]

Multidimensional lists are also possible. The notation for the declaration is reversed compared to some other languages, but the access notation is not reversed.

A two dimensional list can be declared with _name: _ValueType[inner_size][outer_size]. Elements can be accessed with _name[outer_index][inner_index].

Defining a list with 2 rows and 5 columns and set all values to 0
exampleList2D: int128[5][2] = empty(int128[5][2])

Setting a value for row the first row (0) and last column (4)
exampleList2D[0][4] = 42

Setting values
exampleList2D = [[10, 11, 12, 13, 14], [16, 17, 18, 19, 20]]

Returning the value in row 0 column 4 (in this case 14)
return exampleList2D[0][4]

Note

Defining an array in storage whose size is significantly larger than 2**64 can result in security vulnerabilities due to risk of overflow.

Dynamic Arrays

Dynamic arrays represent bounded arrays whose length can be modified at runtime, up to a bound specified in the type. They can be declared with _name: DynArray[_Type, _Integer], where _Type can be of value type or reference type (except mappings).

Defining a list
exampleList: DynArray[int128, 3]

Setting values
exampleList = []
exampleList.pop() # would revert!
exampleList.append(42) # exampleList now has length 1
exampleList.append(120) # exampleList now has length 2
exampleList.append(356) # exampleList now has length 3
exampleList.append(1) # would revert!

myValue: int128 = exampleList.pop() # myValue == 356, exampleList now has length 2

myValue = exampleList[2] # would revert!

Returning a value
return exampleList[0]

Note

Attempting to access data past the runtime length of an array, pop() an empty array or append() to a full array will result in a runtime REVERT. Attempting to pass an array in calldata which is larger than the array bound will result in a runtime REVERT.

Note

To keep code easy to reason about, modifying an array while using it as an iterator is disallowed by the language. For instance, the following usage is not allowed:

for item in self.my_array:
 self.my_array[0] = item

In the ABI, they are represented as _Type[]. For instance, DynArray[int128, 3] gets represented as int128[], and DynArray[DynArray[int128, 3], 3] gets represented as int128[][].

Note

Defining a dynamic array in storage whose size is significantly larger than 2**64 can result in security vulnerabilities due to risk of overflow.

Structs

Structs are custom defined types that can group several variables.

Struct types can be used inside mappings and arrays. Structs can contain arrays and other structs, but not mappings.

Struct members can be accessed via struct.argname.

Defining a struct
struct MyStruct:
 value1: int128
 value2: decimal

Declaring a struct variable
exampleStruct: MyStruct = MyStruct(value1=1, value2=2.0)

Accessing a value
exampleStruct.value1 = 1

Mappings

Mappings are hash tables [https://en.wikipedia.org/wiki/Hash_table] that are virtually initialized such that every possible key exists and is mapped to a value whose byte-representation is all zeros: a type’s default value.

The key data is not stored in a mapping. Instead, its keccak256 hash is used to look up a value. For this reason, mappings do not have a length or a concept of a key or value being “set”.

Mapping types are declared as HashMap[_KeyType, _ValueType].

	_KeyType can be any base or bytes type. Mappings, arrays or structs are not supported as key types.

	_ValueType can actually be any type, including mappings.

Note

Mappings are only allowed as state variables.

Defining a mapping
exampleMapping: HashMap[int128, decimal]

Accessing a value
exampleMapping[0] = 10.1

Note

Mappings have no concept of length and so cannot be iterated over.

Initial Values

Unlike most programming languages, Vyper does not have a concept of null. Instead, every variable type has a default value. To check if a variable is empty, you must compare it to the default value for its given type.

To reset a variable to its default value, assign to it the built-in empty() function which constructs a zero value for that type.

Note

Memory variables must be assigned a value at the time they are declared.

Here you can find a list of all types and default values:

	Type

	Default Value

	address

	0x00

	bool

	False

	bytes32

	0x00

	decimal

	0.0

	uint8

	0

	int128

	0

	int256

	0

	uint256

	0

Note

In Bytes, the array starts with the bytes all set to '\x00'.

Note

In reference types, all the type’s members are set to their initial values.

Type Conversions

All type conversions in Vyper must be made explicitly using the built-in convert(a: atype, btype) function. Type conversions in Vyper are designed to be safe and intuitive. All type conversions will check that the input is in bounds for the output type. The general principles are:

	Except for conversions involving decimals and bools, the input is bit-for-bit preserved.

	Conversions to bool map all nonzero inputs to 1.

	When converting from decimals to integers, the input is truncated towards zero.

	address types are treated as uint160, except conversions with signed integers and decimals are not allowed.

	Converting between right-padded (bytes, Bytes, String) and left-padded types, results in a rotation to convert the padding. For instance, converting from bytes20 to address would result in rotating the input by 12 bytes to the right.

	Converting between signed and unsigned integers reverts if the input is negative.

	Narrowing conversions (e.g., int256 -> int128) check that the input is in bounds for the output type.

	Converting between bytes and int types results in sign-extension if the output type is signed. For instance, converting 0xff (bytes1) to int8 returns -1.

	Converting between bytes and int types which have different sizes follows the rule of going through the closest integer type, first. For instance, bytes1 -> int16 is like bytes1 -> int8 -> int16 (signextend, then widen). uint8 -> bytes20 is like uint8 -> uint160 -> bytes20 (rotate left 12 bytes).

	Flags can be converted to and from uint256 only.

A small Python reference implementation is maintained as part of Vyper’s test suite, it can be found here [https://github.com/vyperlang/vyper/blob/c4c6afd07801a0cc0038cdd4007cc43860c54193/tests/parser/functions/test_convert.py#L318]. The motivation and more detailed discussion of the rules can be found here [https://github.com/vyperlang/vyper/issues/2507].

Environment Variables and Constants

Environment Variables

Environment variables always exist in the namespace and are primarily used to provide information about the blockchain or current transaction.

Block and Transaction Properties

	Name

	Type

	Value

	block.coinbase

	address

	Current block miner’s address

	block.difficulty

	uint256

	Current block difficulty

	block.prevrandao

	bytes32

	Current randomness beacon provided by the beacon chain

	block.number

	uint256

	Current block number

	block.prevhash

	bytes32

	Equivalent to blockhash(block.number - 1)

	block.timestamp

	uint256

	Current block epoch timestamp

	chain.id

	uint256

	Chain ID

	msg.data

	Bytes

	Message data

	msg.gas

	uint256

	Remaining gas

	msg.sender

	address

	Sender of the message (current call)

	msg.value

	uint256

	Number of wei sent with the message

	tx.origin

	address

	Sender of the transaction (full call chain)

	tx.gasprice

	uint256

	Gas price of current transaction in wei

Note

block.prevrandao is an alias for the block.difficulty opcode. Since block.difficulty is considered deprecated according to EIP-4399 [https://eips.ethereum.org/EIPS/eip-4399] after “The Merge” (Paris hard fork), we recommend using block.prevrandao.

Note

msg.data requires the usage of slice to explicitly extract a section of calldata. If the extracted section exceeds the bounds of calldata, this will throw. You can check the size of msg.data using len.

The self Variable

self is an environment variable used to reference a contract from within itself. Along with the normal address members, self allows you to read and write to state variables and to call private functions within the contract.

	Name

	Type

	Value

	self

	address

	Current contract’s address

	self.balance

	uint256

	Current contract’s balance

Accessing State Variables

self is used to access a contract’s state variables, as shown in the following example:

state_var: uint256

@external
def set_var(value: uint256) -> bool:
 self.state_var = value
 return True

@external
@view
def get_var() -> uint256:
 return self.state_var

Calling Internal Functions

self is also used to call internal functions within a contract:

@internal
def _times_two(amount: uint256) -> uint256:
 return amount * 2

@external
def calculate(amount: uint256) -> uint256:
 return self._times_two(amount)

Custom Constants

Custom constants can be defined at a global level in Vyper. To define a constant, make use of the constant keyword.

TOTAL_SUPPLY: constant(uint256) = 10000000
total_supply: public(uint256)

@external
def __init__():
 self.total_supply = TOTAL_SUPPLY

Statements

Vyper’s statements are syntactically similar to Python, with some notable exceptions.

Control Flow

break

The break statement terminates the nearest enclosing for loop.

for i in [1, 2, 3, 4, 5]:
 if i == a:
 break

In the above example, the for loop terminates if i == a.

continue

The continue statement begins the next cycle of the nearest enclosing for loop.

for i in [1, 2, 3, 4, 5]:
 if i != a:
 continue
 ...

In the above example, the for loop begins the next cycle immediately whenever i != a.

pass

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed:

this function does nothing (yet!)

@external
def foo():
 pass

return

return leaves the current function call with the expression list (or None) as a return value.

return RETURN_VALUE

If a function has no return type, it is allowed to omit the return statement, otherwise, the function must end with a return statement, or another terminating action such as raise.

It is not allowed to have additional, unreachable statements after a return statement.

Event Logging

log

The log statement is used to log an event:

log MyEvent(...)

The event must have been previously declared.

See Event Logging for more information on events.

Assertions and Exceptions

Vyper uses state-reverting exceptions to handle errors. Exceptions trigger the REVERT opcode (0xFD) with the provided reason given as the error message. When an exception is raised the code stops operation, the contract’s state is reverted to the state before the transaction took place and the remaining gas is returned to the transaction’s sender. When an exception happen in a sub-call, it “bubbles up” (i.e., exceptions are rethrown) automatically.

If the reason string is set to UNREACHABLE, an INVALID opcode (0xFE) is used instead of REVERT. In this case, calls that revert do not receive a gas refund. This is not a recommended practice for general usage, but is available for interoperability with various tools that use the INVALID opcode to perform dynamic analysis.

raise

The raise statement triggers an exception and reverts the current call.

raise "something went wrong"

The error string is not required. If it is provided, it is limited to 1024 bytes.

assert

The assert statement makes an assertion about a given condition. If the condition evaluates falsely, the transaction is reverted.

assert x > 5, "value too low"

The error string is not required. If it is provided, it is limited to 1024 bytes.

This method’s behavior is equivalent to:

if not cond:
 raise "reason"

Control Structures

Functions

Functions are executable units of code within a contract. Functions may only be declared within a contract’s module scope.

@external
def bid():
 ...

Functions may be called internally or externally depending on their visibility. Functions may accept input arguments and return variables in order to pass values between them.

Visibility

All functions must include exactly one visibility decorator.

External Functions

External functions (marked with the @external decorator) are a part of the contract interface and may only be called via transactions or from other contracts.

@external
def add_seven(a: int128) -> int128:
 return a + 7

@external
def add_seven_with_overloading(a: uint256, b: uint256 = 3):
 return a + b

A Vyper contract cannot call directly between two external functions. If you must do this, you can use an interface.

Note

For external functions with default arguments like def my_function(x: uint256, b: uint256 = 1) the Vyper compiler will generate N+1 overloaded function selectors based on N default arguments.

Internal Functions

Internal functions (marked with the @internal decorator) are only accessible from other functions within the same contract. They are called via the self object:

@internal
def _times_two(amount: uint256, two: uint256 = 2) -> uint256:
 return amount * two

@external
def calculate(amount: uint256) -> uint256:
 return self._times_two(amount)

Note

Since calling an internal function is realized by jumping to its entry label, the internal function dispatcher ensures the correctness of the jumps. Please note that for internal functions which use more than one default parameter, Vyper versions >=0.3.8 are strongly recommended due to the security advisory GHSA-ph9x-4vc9-m39g [https://github.com/vyperlang/vyper/security/advisories/GHSA-ph9x-4vc9-m39g].

Mutability

You can optionally declare a function’s mutability by using a decorator. There are four mutability levels:

	Pure: does not read from the contract state or any environment variables.

	View: may read from the contract state, but does not alter it.

	Nonpayable: may read from and write to the contract state, but cannot receive Ether.

	Payable: may read from and write to the contract state, and can receive Ether.

@view
@external
def readonly():
 # this function cannot write to state
 ...

@payable
@external
def send_me_money():
 # this function can receive ether
 ...

Functions default to nonpayable when no mutability decorator is used.

Functions marked with @view cannot call mutable (payable or nonpayable) functions. Any external calls are made using the special STATICCALL opcode, which prevents state changes at the EVM level.

Functions marked with @pure cannot call non-pure functions.

Re-entrancy Locks

The @nonreentrant decorator places a global nonreentrancy lock on a function. An attempt by an external contract to call back into any other @nonreentrant function causes the transaction to revert.

@external
@nonreentrant
def make_a_call(_addr: address):
 # this function is protected from re-entrancy
 ...

You can put the @nonreentrant decorator on a __default__ function but we recommend against it because in most circumstances it will not work in a meaningful way.

Nonreentrancy locks work by setting a specially allocated storage slot to a <locked> value on function entrance, and setting it to an <unlocked> value on function exit. On function entrance, if the storage slot is detected to be the <locked> value, execution reverts.

You cannot put the @nonreentrant decorator on a pure function. You can put it on a view function, but it only checks that the function is not in a callback (the storage slot is not in the <locked> state), as view functions can only read the state, not change it.

You can view where the nonreentrant key is physically laid out in storage by using vyper with the -f layout option (e.g., vyper -f layout foo.vy). Unless it is overriden, the compiler will allocate it at slot 0.

Note

A mutable function can protect a view function from being called back into (which is useful for instance, if a view function would return inconsistent state during a mutable function), but a view function cannot protect itself from being called back into. Note that mutable functions can never be called from a view function because all external calls out from a view function are protected by the use of the STATICCALL opcode.

Note

A nonreentrant lock has an <unlocked> value of 3, and a <locked> value of 2. Nonzero values are used to take advantage of net gas metering - as of the Berlin hard fork, the net cost for utilizing a nonreentrant lock is 2300 gas. Prior to v0.3.4, the <unlocked> and <locked> values were 0 and 1, respectively.

Note

Prior to 0.4.0, nonreentrancy keys took a “key” argument for fine-grained nonreentrancy control. As of 0.4.0, only a global nonreentrancy lock is available.

The __default__ Function

A contract can also have a default function, which is executed on a call to the contract if no other functions match the given function identifier (or if none was supplied at all, such as through someone sending it Eth). It is the same construct as fallback functions in Solidity [https://solidity.readthedocs.io/en/latest/contracts.html?highlight=fallback#fallback-function].

This function is always named __default__. It must be annotated with @external. It cannot expect any input arguments.

If the function is annotated as @payable, this function is executed whenever the contract is sent Ether (without data). This is why the default function cannot accept arguments - it is a design decision of Ethereum to make no differentiation between sending ether to a contract or a user address.

event Payment:
 amount: uint256
 sender: indexed(address)

@external
@payable
def __default__():
 log Payment(msg.value, msg.sender)

Considerations

Just as in Solidity, Vyper generates a default function if one isn’t found, in the form of a REVERT call. Note that this still generates an exception [https://github.com/ethereum/wiki/wiki/Subtleties] and thus will not succeed in receiving funds.

Ethereum specifies that the operations will be rolled back if the contract runs out of gas in execution. send calls to the contract come with a free stipend of 2300 gas, which does not leave much room to perform other operations except basic logging. However, if the sender includes a higher gas amount through a call instead of send, then more complex functionality can be run.

It is considered a best practice to ensure your payable default function is compatible with this stipend. The following operations will consume more than 2300 gas:

	Writing to storage

	Creating a contract

	Calling an external function which consumes a large amount of gas

	Sending Ether

Lastly, although the default function receives no arguments, it can still access the msg object, including:

	the address of who is interacting with the contract (msg.sender)

	the amount of ETH sent (msg.value)

	the gas provided (msg.gas).

The __init__ Function

__init__ is a special initialization function that may only be called at the time of deploying a contract. It can be used to set initial values for storage variables. A common use case is to set an owner variable with the creator the contract:

owner: address

@external
def __init__():
 self.owner = msg.sender

You cannot call to other contract functions from the initialization function.

Decorators Reference

All functions must include one visibility decorator (@external or @internal). The remaining decorators are optional.

	Decorator

	Description

	@external

	Function can only be called externally

	@internal

	Function can only be called within current contract

	@pure

	Function does not read contract state or environment variables

	@view

	Function does not alter contract state

	@payable

	Function is able to receive Ether

	@nonreentrant

	Function cannot be called back into during an external call

if statements

The if statement is a control flow construct used for conditional execution:

if CONDITION:
 ...

CONDITION is a boolean or boolean operation. The boolean is evaluated left-to-right, one expression at a time, until the condition is found to be true or false. If true, the logic in the body of the if statement is executed.

Note that unlike Python, Vyper does not allow implicit conversion from non-boolean types within the condition of an if statement. if 1: pass will fail to compile with a type mismatch.

You can also include elif and else statements, to add more conditional statements and a body that executes when the conditionals are false:

if CONDITION:
 ...
elif OTHER_CONDITION:
 ...
else:
 ...

for loops

The for statement is a control flow construct used to iterate over a value:

for i in <ITERABLE>:
 ...

The iterated value can be a static array, a dynamic array, or generated from the built-in range function.

Array Iteration

You can use for to iterate through the values of any array variable:

foo: int128[3] = [4, 23, 42]
for i in foo:
 ...

In the above, example, the loop executes three times with i assigned the values of 4, 23, and then 42.

You can also iterate over a literal array, as long as a common type can be determined for each item in the array:

for i in [4, 23, 42]:
 ...

Some restrictions:

	You cannot iterate over a multi-dimensional array. i must always be a base type.

	You cannot modify a value in an array while it is being iterated, or call to a function that might modify the array being iterated.

Range Iteration

Ranges are created using the range function. The following examples are valid uses of range:

for i in range(STOP):
 ...

STOP is a literal integer greater than zero. i begins as zero and increments by one until it is equal to STOP.

for i in range(stop, bound=N):
 ...

Here, stop can be a variable with integer type, greater than zero. N must be a compile-time constant. i begins as zero and increments by one until it is equal to stop. If stop is larger than N, execution will revert at runtime. In certain cases, you may not have a guarantee that stop is less than N, but still want to avoid the possibility of runtime reversion. To accomplish this, use the bound= keyword in combination with min(stop, N) as the argument to range, like range(min(stop, N), bound=N). This is helpful for use cases like chunking up operations on larger arrays across multiple transactions.

Another use of range can be with START and STOP bounds.

for i in range(START, STOP):
 ...

Here, START and STOP are literal integers, with STOP being a greater value than START. i begins as START and increments by one until it is equal to STOP.

Finally, it is possible to use range with runtime start and stop values as long as a constant bound value is provided.
In this case, Vyper checks at runtime that end - start <= bound.
N must be a compile-time constant.

for i in range(start, end, bound=N):
 ...

Scoping and Declarations

Variable Declaration

The first time a variable is referenced you must declare its type:

data: int128

In the above example, we declare the variable data with a type of int128.

Depending on the active scope, an initial value may or may not be assigned:

	For storage variables (declared in the module scope), an initial value cannot be set

	For memory variables (declared within a function), an initial value must be set

	For calldata variables (function input arguments), a default value may be given

Declaring Public Variables

Storage variables can be marked as public during declaration:

data: public(int128)

The compiler automatically creates getter functions for all public storage variables. For the example above, the compiler will generate a function called data that does not take any arguments and returns an int128, the value of the state variable data.

For public arrays, you can only retrieve a single element via the generated getter. This mechanism exists to avoid high gas costs when returning an entire array. The getter will accept an argument to specify which element to return, for example data(0).

Declaring Immutable Variables

Variables can be marked as immutable during declaration:

DATA: immutable(uint256)

@external
def __init__(_data: uint256):
 DATA = _data

Variables declared as immutable are similar to constants, except they are assigned a value in the constructor of the contract. Immutable values must be assigned a value at construction and cannot be assigned a value after construction.

The contract creation code generated by the compiler will modify the contract’s runtime code before it is returned by appending all values assigned to immutables to the runtime code returned by the constructor. This is important if you are comparing the runtime code generated by the compiler with the one actually stored in the blockchain.

Tuple Assignment

You cannot directly declare tuple types. However, in certain cases you can use literal tuples during assignment. For example, when a function returns multiple values:

@internal
def foo() -> (int128, int128):
 return 2, 3

@external
def bar():
 a: int128 = 0
 b: int128 = 0

 # the return value of `foo` is assigned using a tuple
 (a, b) = self.foo()

 # Can also skip the parenthesis
 a, b = self.foo()

Storage Layout

Storage variables are located within a smart contract at specific storage slots. By default, the compiler allocates the first variable to be stored at slot 0; subsequent variables are stored in order after that.

There are cases where it is necessary to override this pattern and to allocate storage variables in custom slots. This behaviour is often required for upgradeable contracts, to ensure that both contracts (the old contract, and the new contract) store the same variable within the same slot.

This can be performed when compiling via vyper by including the --storage-layout-file flag.

For example, consider upgrading the following contract:

old_contract.vy
owner: public(address)
balanceOf: public(HashMap[address, uint256])

new_contract.vy
owner: public(address)
minter: public(address)
balanceOf: public(HashMap[address, uint256])

This would cause an issue when upgrading, as the balanceOf mapping would be located at slot1 in the old contract, and slot2 in the new contract.

This issue can be avoided by allocating balanceOf to slot1 using the storage layout overrides. The contract can be compiled with vyper new_contract.vy --storage-layout-file new_contract_storage.json where new_contract_storage.json contains the following:

{
 "owner": {"type": "address", "slot": 0},
 "minter": {"type": "address", "slot": 2},
 "balanceOf": {"type": "HashMap[address, uint256]", "slot": 1}
}

For further information on generating the storage layout, see Storage Layout.

Scoping Rules

Vyper follows C99 scoping rules. Variables are visible from the point right after their declaration until the end of the smallest block that contains the declaration.

Module Scope

Variables and other items declared outside of a code block (functions, constants, event and struct definitions, …), are visible even before they were declared. This means you can use module-scoped items before they are declared.

An exception to this rule is that you can only call functions that have already been declared.

Accessing Module Scope from Functions

Values that are declared in the module scope of a contract, such as storage variables and functions, are accessed via the self object:

a: int128

@internal
def foo() -> int128
 return 42

@external
def foo() -> int128:
 b: int128 = self.foo()
 return self.a + b

Name Shadowing

It is not permitted for a memory or calldata variable to shadow the name of an immutable or constant value. The following examples will not compile:

a: constant(bool) = True

@external
def foo() -> bool:
 # memory variable cannot have the same name as a constant or immutable variable
 a: bool = False
 return a

a: immutable(bool)

@external
def __init__():
 a = True
@external
def foo(a:bool) -> bool:
 # input argument cannot have the same name as a constant or immutable variable
 return a

Function Scope

Variables that are declared within a function, or given as function input arguments, are visible within the body of that function. For example, the following contract is valid because each declaration of a only exists within one function’s body.

@external
def foo(a: int128):
 pass

@external
def bar(a: uint256):
 pass

@external
def baz():
 a: bool = True

The following examples will not compile:

@external
def foo(a: int128):
 # `a` has already been declared as an input argument
 a: int128 = 21

@external
def foo(a: int128):
 a = 4

@external
def bar():
 # `a` has not been declared within this function
 a += 12

Block Scopes

Logical blocks created by for and if statements have their own scope. For example, the following contract is valid because x only exists within the block scopes for each branch of the if statement:

@external
def foo(a: bool) -> int128:
 if a:
 x: int128 = 3
 else:
 x: bool = False

In a for statement, the target variable exists within the scope of the loop. For example, the following contract is valid because i is no longer available upon exiting the loop:

@external
def foo(a: bool) -> int128:
 for i in [1, 2, 3]:
 pass
 i: bool = False

The following contract fails to compile because a has not been declared outside of the loop.

@external
def foo(a: bool) -> int128:
 for i in [1, 2, 3]:
 a: int128 = i
 a += 3

Built-in Functions

Vyper provides a collection of built-in functions available in the global namespace of all contracts.

Bitwise Operations

	
bitwise_and(x: uint256, y: uint256) → uint256

	Perform a “bitwise and” operation. Each bit of the output is 1 if the corresponding bit of x AND of y is 1, otherwise it is 0.

@external
@view
def foo(x: uint256, y: uint256) -> uint256:
 return bitwise_and(x, y)

>>> ExampleContract.foo(31337, 8008135)
12353

Note

This function has been deprecated from version 0.3.4 onwards. Please use the & operator instead.

	
bitwise_not(x: uint256) → uint256

	Return the bitwise complement of x - the number you get by switching each 1 for a 0 and each 0 for a 1.

@external
@view
def foo(x: uint256) -> uint256:
 return bitwise_not(x)

>>> ExampleContract.foo(0)
115792089237316195423570985008687907853269984665640564039457584007913129639935

Note

This function has been deprecated from version 0.3.4 onwards. Please use the ~ operator instead.

	
bitwise_or(x: uint256, y: uint256) → uint256

	Perform a “bitwise or” operation. Each bit of the output is 0 if the corresponding bit of x AND of y is 0, otherwise it is 1.

@external
@view
def foo(x: uint256, y: uint256) -> uint256:
 return bitwise_or(x, y)

>>> ExampleContract.foo(31337, 8008135)
8027119

Note

This function has been deprecated from version 0.3.4 onwards. Please use the | operator instead.

	
bitwise_xor(x: uint256, y: uint256) → uint256

	Perform a “bitwise exclusive or” operation. Each bit of the output is the same as the corresponding bit in x if that bit in y is 0, and it is the complement of the bit in x if that bit in y is 1.

@external
@view
def foo(x: uint256, y: uint256) -> uint256:
 return bitwise_xor(x, y)

>>> ExampleContract.foo(31337, 8008135)
8014766

Note

This function has been deprecated from version 0.3.4 onwards. Please use the ^ operator instead.

	
shift(x: int256 | uint256, _shift: integer) → uint256

	Return x with the bits shifted _shift places. A positive _shift value equals a left shift, a negative value is a right shift.

@external
@view
def foo(x: uint256, y: int128) -> uint256:
 return shift(x, y)

>>> ExampleContract.foo(2, 8)
512

Note

This function has been deprecated from version 0.3.8 onwards. Please use the << and >> operators instead.

Chain Interaction

Vyper has three built-ins for contract creation; all three contract creation built-ins rely on the code to deploy already being stored on-chain, but differ in call vs deploy overhead, and whether or not they invoke the constructor of the contract to be deployed. The following list provides a short summary of the differences between them.

	
	create_minimal_proxy_to(target: address, ...)
	
	Creates an immutable proxy to target

	Expensive to call (incurs a single DELEGATECALL overhead on every invocation), cheap to create (since it only deploys EIP-1167 forwarder bytecode)

	Does not have the ability to call a constructor

	Does not check that there is code at target (allows one to deploy proxies counterfactually)

	
	create_copy_of(target: address, ...)
	
	Creates a byte-for-byte copy of runtime code stored at target

	Cheap to call (no DELEGATECALL overhead), expensive to create (200 gas per deployed byte)

	Does not have the ability to call a constructor

	Performs an EXTCODESIZE check to check there is code at target

	
	create_from_blueprint(target: address, ...)
	
	Deploys a contract using the initcode stored at target

	Cheap to call (no DELEGATECALL overhead), expensive to create (200 gas per deployed byte)

	Invokes constructor, requires a special “blueprint” contract to be deployed

	Performs an EXTCODESIZE check to check there is code at target

	
create_minimal_proxy_to(target: address, value: uint256 = 0, revert_on_failure: bool = True[, salt: bytes32]) → address

	Deploys a small, EIP1167-compliant “minimal proxy contract” that duplicates the logic of the contract at target, but has its own state since every call to target is made using DELEGATECALL to target. To the end user, this should be indistinguishable from an independently deployed contract with the same code as target.

	target: Address of the contract to proxy to

	value: The wei value to send to the new contract address (Optional, default 0)

	revert_on_failure: If False, instead of reverting when the create operation fails, return the zero address (Optional, default True)

	salt: A bytes32 value utilized by the deterministic CREATE2 opcode (Optional, if not supplied, CREATE is used)

Returns the address of the newly created proxy contract. If the create operation fails (for instance, in the case of a CREATE2 collision), execution will revert.

@external
def foo(target: address) -> address:
 return create_minimal_proxy_to(target)

Note

It is very important that the deployed contract at target is code you know and trust, and does not implement the selfdestruct opcode or have upgradeable code as this will affect the operation of the proxy contract.

Note

There is no runtime check that there is code already deployed at target (since a proxy may be deployed counterfactually). Most applications may want to insert this check.

Note

Before version 0.3.4, this function was named create_forwarder_to.

	
create_copy_of(target: address, value: uint256 = 0, revert_on_failure: bool = True[, salt: bytes32]) → address

	Create a physical copy of the runtime code at target. The code at target is byte-for-byte copied into a newly deployed contract.

	target: Address of the contract to copy

	value: The wei value to send to the new contract address (Optional, default 0)

	revert_on_failure: If False, instead of reverting when the create operation fails, return the zero address (Optional, default True)

	salt: A bytes32 value utilized by the deterministic CREATE2 opcode (Optional, if not supplied, CREATE is used)

Returns the address of the created contract. If the create operation fails (for instance, in the case of a CREATE2 collision), execution will revert. If there is no code at target, execution will revert.

@external
def foo(target: address) -> address:
 return create_copy_of(target)

Note

The implementation of create_copy_of assumes that the code at target is smaller than 16MB. While this is much larger than the EIP-170 constraint of 24KB, it is a conservative size limit intended to future-proof deployer contracts in case the EIP-170 constraint is lifted. If the code at target is larger than 16MB, the behavior of create_copy_of is undefined.

	
create_from_blueprint(target: address, *args, value: uint256 = 0, raw_args: bool = False, code_offset: int = 3, revert_on_failure: bool = True[, salt: bytes32]) → address

	Copy the code of target into memory and execute it as initcode. In other words, this operation interprets the code at target not as regular runtime code, but directly as initcode. The *args are interpreted as constructor arguments, and are ABI-encoded and included when executing the initcode.

	target: Address of the blueprint to invoke

	*args: Constructor arguments to forward to the initcode.

	value: The wei value to send to the new contract address (Optional, default 0)

	raw_args: If True, *args must be a single Bytes[...] argument, which will be interpreted as a raw bytes buffer to forward to the create operation (which is useful for instance, if pre- ABI-encoded data is passed in from elsewhere). (Optional, default False)

	code_offset: The offset to start the EXTCODECOPY from (Optional, default 3)

	revert_on_failure: If False, instead of reverting when the create operation fails, return the zero address (Optional, default True)

	salt: A bytes32 value utilized by the deterministic CREATE2 opcode (Optional, if not supplied, CREATE is used)

Returns the address of the created contract. If the create operation fails (for instance, in the case of a CREATE2 collision), execution will revert. If code_offset >= target.codesize (ex. if there is no code at target), execution will revert.

@external
def foo(blueprint: address) -> address:
 arg1: uint256 = 18
 arg2: String[32] = "some string"
 return create_from_blueprint(blueprint, arg1, arg2, code_offset=1)

Note

To properly deploy a blueprint contract, special deploy bytecode must be used. The output of vyper -f blueprint_bytecode will produce bytecode which deploys an ERC-5202 compatible blueprint.

Note

Prior to Vyper version 0.4.0, the code_offset parameter defaulted to 0.

Warning

It is recommended to deploy blueprints with an ERC-5202 [https://eips.ethereum.org/EIPS/eip-5202] preamble like 0xFE7100 to guard them from being called as regular contracts. This is particularly important for factories where the constructor has side effects (including SELFDESTRUCT!), as those could get executed by anybody calling the blueprint contract directly. The code_offset= kwarg is provided (and defaults to the ERC-5202 default of 3) to enable this pattern:

@external
def foo(blueprint: address) -> address:
 # `blueprint` is a blueprint contract with some known preamble b"abcd..."
 return create_from_blueprint(blueprint, code_offset=<preamble length>)

	
raw_call(to: address, data: Bytes, max_outsize: uint256 = 0, gas: uint256 = gasLeft, value: uint256 = 0, is_delegate_call: bool [https://docs.python.org/3.10/library/functions.html#bool] = False, is_static_call: bool [https://docs.python.org/3.10/library/functions.html#bool] = False, revert_on_failure: bool [https://docs.python.org/3.10/library/functions.html#bool] = True) → Bytes[max_outsize]

	Call to the specified Ethereum address.

	to: Destination address to call to

	data: Data to send to the destination address

	max_outsize: Maximum length of the bytes array returned from the call. If the returned call data exceeds this length, only this number of bytes is returned. (Optional, default 0)

	gas: The amount of gas to attach to the call. (Optional, defaults to msg.gas).

	value: The wei value to send to the address (Optional, default 0)

	is_delegate_call: If True, the call will be sent as DELEGATECALL (Optional, default False)

	is_static_call: If True, the call will be sent as STATICCALL (Optional, default False)

	revert_on_failure: If True, the call will revert on a failure, otherwise success will be returned (Optional, default True)

Note

Returns the data returned by the call as a Bytes list, with max_outsize as the max length. The actual size of the returned data may be less than max_outsize. You can use len to obtain the actual size.

Returns nothing if max_outsize is omitted or set to 0.

Returns success in a tuple with return value if revert_on_failure is set to False.

@external
@payable
def foo(_target: address) -> Bytes[32]:
 response: Bytes[32] = raw_call(_target, method_id("someMethodName()"), max_outsize=32, value=msg.value)
 return response

@external
@payable
def bar(_target: address) -> Bytes[32]:
 success: bool = False
 response: Bytes[32] = b""
 x: uint256 = 123
 success, response = raw_call(
 _target,
 _abi_encode(x, method_id=method_id("someMethodName(uint256)")),
 max_outsize=32,
 value=msg.value,
 revert_on_failure=False
)
 assert success
 return response

Note

Regarding “forwarding all gas”, note that, while Vyper will provide msg.gas to the call, in practice, there are some subtleties around forwarding all remaining gas on the EVM which are out of scope of this documentation and could be subject to change. For instance, see the language in EIP-150 around “all but one 64th”.

	
raw_log(topics: bytes32[4], data: Bytes | bytes32) → None [https://docs.python.org/3.10/library/constants.html#None]

	Provides low level access to the LOG opcodes, emitting a log without having to specify an ABI type.

	topics: List of bytes32 log topics. The length of this array determines which opcode is used.

	data: Unindexed event data to include in the log. May be given as Bytes or bytes32.

@external
def foo(_topic: bytes32, _data: Bytes[100]):
 raw_log([_topic], _data)

	
raw_revert(data: Bytes) → None [https://docs.python.org/3.10/library/constants.html#None]

	Provides low level access to the REVERT opcode, reverting execution with the specified data returned.

	data: Data representing the error message causing the revert.

@external
def foo(_data: Bytes[100]):
 raw_revert(_data)

	
selfdestruct(to: address) → None [https://docs.python.org/3.10/library/constants.html#None]

	Trigger the SELFDESTRUCT opcode (0xFF), causing the contract to be destroyed.

	to: Address to forward the contract’s ether balance to

Warning

This method deletes the contract from the blockchain. All non-ether assets associated with this contract are “burned” and the contract is no longer accessible.

Note

This function has been deprecated from version 0.3.8 onwards. The underlying opcode will eventually undergo breaking changes, and its use is not recommended.

@external
def do_the_needful():
 selfdestruct(msg.sender)

	
send(to: address, value: uint256, gas: uint256 = 0) → None [https://docs.python.org/3.10/library/constants.html#None]

	Send ether from the contract to the specified Ethereum address.

	to: The destination address to send ether to

	value: The wei value to send to the address

	gas: The amount of gas (the “stipend”) to attach to the call. If not set, the stipend defaults to 0.

Note

The amount to send is always specified in wei.

@external
def foo(_receiver: address, _amount: uint256, gas: uint256):
 send(_receiver, _amount, gas=gas)

Cryptography

	
ecadd(a: uint256[2], b: uint256[2]) → uint256[2]

	Take two points on the Alt-BN128 curve and add them together.

@external
@view
def foo(x: uint256[2], y: uint256[2]) -> uint256[2]:
 return ecadd(x, y)

>>> ExampleContract.foo([1, 2], [1, 2])
[
 1368015179489954701390400359078579693043519447331113978918064868415326638035,
 9918110051302171585080402603319702774565515993150576347155970296011118125764,
]

	
ecmul(point: uint256[2], scalar: uint256) → uint256[2]

	Take a point on the Alt-BN128 curve (p) and a scalar value (s), and return the result of adding the point to itself s times, i.e. p * s.

	point: Point to be multiplied

	scalar: Scalar value

@external
@view
def foo(point: uint256[2], scalar: uint256) -> uint256[2]:
 return ecmul(point, scalar)

>>> ExampleContract.foo([1, 2], 3)
[
 3353031288059533942658390886683067124040920775575537747144343083137631628272,
 19321533766552368860946552437480515441416830039777911637913418824951667761761,
]

	
ecrecover(hash: bytes32, v: uint256 | uint8, r: uint256 | bytes32, s: uint256 | bytes32) → address

	Recover the address associated with the public key from the given elliptic curve signature.

	r: first 32 bytes of signature

	s: second 32 bytes of signature

	v: final 1 byte of signature

Returns the associated address, or empty(address) on error.

Note

Prior to Vyper 0.3.10, the ecrecover function could return an undefined (possibly nonzero) value for invalid inputs to ecrecover. For more information, please see GHSA-f5x6-7qgp-jhf3 [https://github.com/vyperlang/vyper/security/advisories/GHSA-f5x6-7qgp-jhf3].

@external
@view
def foo(hash: bytes32, v: uint8, r:bytes32, s:bytes32) -> address:
 return ecrecover(hash, v, r, s)

@external
@view
def foo(hash: bytes32, v: uint256, r:uint256, s:uint256) -> address:
 return ecrecover(hash, v, r, s)

>>> ExampleContract.foo('0x6c9c5e133b8aafb2ea74f524a5263495e7ae5701c7248805f7b511d973dc7055',
 28,
 78616903610408968922803823221221116251138855211764625814919875002740131251724,
 37668412420813231458864536126575229553064045345107737433087067088194345044408
)
'0x9eE53ad38Bb67d745223a4257D7d48cE973FeB7A'

	
keccak256(_value) → bytes32

	Return a keccak256 hash of the given value.

	_value: Value to hash. Can be a String, Bytes, or bytes32.

@external
@view
def foo(_value: Bytes[100]) -> bytes32
 return keccak256(_value)

>>> ExampleContract.foo(b"potato")
0x9e159dfcfe557cc1ca6c716e87af98fdcb94cd8c832386d0429b2b7bec02754f

	
sha256(_value) → bytes32

	Return a sha256 (SHA2 256-bit output) hash of the given value.

	_value: Value to hash. Can be a String, Bytes, or bytes32.

@external
@view
def foo(_value: Bytes[100]) -> bytes32
 return sha256(_value)

>>> ExampleContract.foo(b"potato")
0xe91c254ad58860a02c788dfb5c1a65d6a8846ab1dc649631c7db16fef4af2dec

Data Manipulation

	
concat(a, b, *args) → Bytes | String

	Take 2 or more bytes arrays of type bytesM, Bytes or String and combine them into a single value.

If the input arguments are String the return type is String. Otherwise the return type is Bytes.

@external
@view
def foo(a: String[5], b: String[5], c: String[5]) -> String[100]:
 return concat(a, " ", b, " ", c, "!")

>>> ExampleContract.foo("why","hello","there")
"why hello there!"

	
convert(value, type_) → Any

	Converts a variable or literal from one type to another.

	value: Value to convert

	type_: The destination type to convert to (e.g., bool, decimal, int128, uint256 or bytes32)

Returns a value of the type specified by type_.

For more details on available type conversions, see Type Conversions.

	
uint2str(value: unsigned integer) → String

	Returns an unsigned integer’s string representation.

	value: Unsigned integer to convert.

Returns the string representation of value.

@external
@view
def foo(b: uint256) -> String[78]:
 return uint2str(b)

>>> ExampleContract.foo(420)
"420"

	
extract32(b: Bytes, start: uint256, output_type=bytes32) → Any

	Extract a value from a Bytes list.

	b: Bytes list to extract from

	start: Start point to extract from

	output_type: Type of output (bytesM, integer, or address). Defaults to bytes32.

Returns a value of the type specified by output_type.

@external
@view
def foo(b: Bytes[32]) -> address:
 return extract32(b, 0, output_type=address)

>>> ExampleContract.foo("0x0000000000000000000000009f8F72aA9304c8B593d555F12eF6589cC3A579A2")
"0x9f8F72aA9304c8B593d555F12eF6589cC3A579A2"

	
slice(b: Bytes | bytes32 | String, start: uint256, length: uint256) → Bytes | String

	Copy a list of bytes and return a specified slice.

	b: value being sliced

	start: start position of the slice

	length: length of the slice

If the value being sliced is a Bytes or bytes32, the return type is Bytes. If it is a String, the return type is String.

@external
@view
def foo(s: String[32]) -> String[5]:
 return slice(s, 4, 5)

>>> ExampleContract.foo("why hello! how are you?")
"hello"

Math

	
abs(value: int256) → int256

	Return the absolute value of a signed integer.

	value: Integer to return the absolute value of

@external
@view
def foo(value: int256) -> int256:
 return abs(value)

>>> ExampleContract.foo(-31337)
31337

	
ceil(value: decimal) → int256

	Round a decimal up to the nearest integer.

	value: Decimal value to round up

@external
@view
def foo(x: decimal) -> int256:
 return ceil(x)

>>> ExampleContract.foo(3.1337)
4

	
epsilon(typename) → Any

	Returns the smallest non-zero value for a decimal type.

	typename: Name of the decimal type (currently only decimal)

@external
@view
def foo() -> decimal:
 return epsilon(decimal)

>>> ExampleContract.foo()
Decimal('1E-10')

	
floor(value: decimal) → int256

	Round a decimal down to the nearest integer.

	value: Decimal value to round down

@external
@view
def foo(x: decimal) -> int256:
 return floor(x)

>>> ExampleContract.foo(3.1337)
3

	
max(a: numeric, b: numeric) → numeric

	Return the greater value of a and b. The input values may be any numeric type as long as they are both of the same type. The output value is of the same type as the input values.

@external
@view
def foo(a: uint256, b: uint256) -> uint256:
 return max(a, b)

>>> ExampleContract.foo(23, 42)
42

	
max_value(type_) → numeric

	Returns the maximum value of the numeric type specified by type_ (e.g., int128, uint256, decimal).

@external
@view
def foo() -> int256:
 return max_value(int256)

>>> ExampleContract.foo()
57896044618658097711785492504343953926634992332820282019728792003956564819967

	
min(a: numeric, b: numeric) → numeric

	Returns the lesser value of a and b. The input values may be any numeric type as long as they are both of the same type. The output value is of the same type as the input values.

@external
@view
def foo(a: uint256, b: uint256) -> uint256:
 return min(a, b)

>>> ExampleContract.foo(23, 42)
23

	
min_value(type_) → numeric

	Returns the minimum value of the numeric type specified by type_ (e.g., int128, uint256, decimal).

@external
@view
def foo() -> int256:
 return min_value(int256)

>>> ExampleContract.foo()
-57896044618658097711785492504343953926634992332820282019728792003956564819968

	
pow_mod256(a: uint256, b: uint256) → uint256

	Return the result of a ** b % (2 ** 256).

This method is used to perform exponentiation without overflow checks.

@external
@view
def foo(a: uint256, b: uint256) -> uint256:
 return pow_mod256(a, b)

>>> ExampleContract.foo(2, 3)
8
>>> ExampleContract.foo(100, 100)
59041770658110225754900818312084884949620587934026984283048776718299468660736

	
sqrt(d: decimal) → decimal

	Return the square root of the provided decimal number, using the Babylonian square root algorithm.

@external
@view
def foo(d: decimal) -> decimal:
 return sqrt(d)

>>> ExampleContract.foo(9.0)
3.0

	
isqrt(x: uint256) → uint256

	Return the (integer) square root of the provided integer number, using the Babylonian square root algorithm. The rounding mode is to round down to the nearest integer. For instance, isqrt(101) == 10.

@external
@view
def foo(x: uint256) -> uint256:
 return isqrt(x)

>>> ExampleContract.foo(101)
10

	
uint256_addmod(a: uint256, b: uint256, c: uint256) → uint256

	Return the modulo of (a + b) % c. Reverts if c == 0. As this built-in function is intended to provides access to the underlying ADDMOD opcode, all intermediate calculations of this operation are not subject to the 2 ** 256 modulo according to the EVM specifications.

@external
@view
def foo(a: uint256, b: uint256, c: uint256) -> uint256:
 return uint256_addmod(a, b, c)

>>> (6 + 13) % 8
3
>>> ExampleContract.foo(6, 13, 8)
3

	
uint256_mulmod(a: uint256, b: uint256, c: uint256) → uint256

	Return the modulo from (a * b) % c. Reverts if c == 0. As this built-in function is intended to provides access to the underlying MULMOD opcode, all intermediate calculations of this operation are not subject to the 2 ** 256 modulo according to the EVM specifications.

@external
@view
def foo(a: uint256, b: uint256, c: uint256) -> uint256:
 return uint256_mulmod(a, b, c)

>>> (11 * 2) % 5
2
>>> ExampleContract.foo(11, 2, 5)
2

	
unsafe_add(x: integer, y: integer) → integer

	Add x and y, without checking for overflow. x and y must both be integers of the same type. If the result exceeds the bounds of the input type, it will be wrapped.

@external
@view
def foo(x: uint8, y: uint8) -> uint8:
 return unsafe_add(x, y)

@external
@view
def bar(x: int8, y: int8) -> int8:
 return unsafe_add(x, y)

>>> ExampleContract.foo(1, 1)
2

>>> ExampleContract.foo(255, 255)
254

>>> ExampleContract.bar(127, 127)
-2

Note

Performance note: for the native word types of the EVM uint256 and int256, this will compile to a single ADD instruction, since the EVM natively wraps addition on 256-bit words.

	
unsafe_sub(x: integer, y: integer) → integer

	Subtract x and y, without checking for overflow. x and y must both be integers of the same type. If the result underflows the bounds of the input type, it will be wrapped.

@external
@view
def foo(x: uint8, y: uint8) -> uint8:
 return unsafe_sub(x, y)

@external
@view
def bar(x: int8, y: int8) -> int8:
 return unsafe_sub(x, y)

>>> ExampleContract.foo(4, 3)
1

>>> ExampleContract.foo(0, 1)
255

>>> ExampleContract.bar(-128, 1)
127

Note

Performance note: for the native word types of the EVM uint256 and int256, this will compile to a single SUB instruction, since the EVM natively wraps subtraction on 256-bit words.

	
unsafe_mul(x: integer, y: integer) → integer

	Multiply x and y, without checking for overflow. x and y must both be integers of the same type. If the result exceeds the bounds of the input type, it will be wrapped.

@external
@view
def foo(x: uint8, y: uint8) -> uint8:
 return unsafe_mul(x, y)

@external
@view
def bar(x: int8, y: int8) -> int8:
 return unsafe_mul(x, y)

>>> ExampleContract.foo(1, 1)
1

>>> ExampleContract.foo(255, 255)
1

>>> ExampleContract.bar(-128, -128)
0

>>> ExampleContract.bar(127, -128)
-128

Note

Performance note: for the native word types of the EVM uint256 and int256, this will compile to a single MUL instruction, since the EVM natively wraps multiplication on 256-bit words.

	
unsafe_div(x: integer, y: integer) → integer

	Divide x and y, without checking for division-by-zero. x and y must both be integers of the same type. If the denominator is zero, the result will (following EVM semantics) be zero.

@external
@view
def foo(x: uint8, y: uint8) -> uint8:
 return unsafe_div(x, y)

@external
@view
def bar(x: int8, y: int8) -> int8:
 return unsafe_div(x, y)

>>> ExampleContract.foo(1, 1)
1

>>> ExampleContract.foo(1, 0)
0

>>> ExampleContract.bar(-128, -1)
-128

Note

Performance note: this will compile to a single SDIV or DIV instruction, depending on if the inputs are signed or unsigned (respectively).

Utilities

	
as_wei_value(_value, unit: str [https://docs.python.org/3.10/library/stdtypes.html#str]) → uint256

	Take an amount of ether currency specified by a number and a unit and return the integer quantity of wei equivalent to that amount.

	_value: Value for the ether unit. Any numeric type may be used, however the value cannot be negative.

	unit: Ether unit name (e.g. "wei", "ether", "gwei", etc.) indicating the denomination of _value. Must be given as a literal string.

@external
@view
def foo(s: String[32]) -> uint256:
 return as_wei_value(1.337, "ether")

>>> ExampleContract.foo(1)
1337000000000000000

	
blockhash(block_num: uint256) → bytes32

	Return the hash of the block at the specified height.

Note

The EVM only provides access to the most recent 256 blocks. This function reverts if the block number is greater than or equal to the current block number or more than 256 blocks behind the current block.

@external
@view
def foo() -> bytes32:
 return blockhash(block.number - 16)

>>> ExampleContract.foo()
0xf3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

	
empty(typename) → Any

	Return a value which is the default (zero-ed) value of its type. Useful for initializing new memory variables.

	typename: Name of the type, except HashMap[_KeyType, _ValueType]

@external
@view
def foo():
 x: uint256[2][5] = empty(uint256[2][5])

	
len(b: Bytes | String | DynArray[_Type, _Integer]) → uint256

	Return the length of a given Bytes, String or DynArray[_Type, _Integer].

@external
@view
def foo(s: String[32]) -> uint256:
 return len(s)

>>> ExampleContract.foo("hello")
5

	
method_id(method, output_type: type [https://docs.python.org/3.10/library/functions.html#type] = Bytes[4]) → Bytes[4] | bytes4

	Takes a function declaration and returns its method_id (used in data field to call it).

	method: Method declaration as given as a literal string

	output_type: The type of output (Bytes[4] or bytes4). Defaults to Bytes[4].

Returns a value of the type specified by output_type.

@external
@view
def foo() -> Bytes[4]:
 return method_id('transfer(address,uint256)', output_type=Bytes[4])

>>> ExampleContract.foo()
0xa9059cbb

	
_abi_encode(*args, ensure_tuple: bool [https://docs.python.org/3.10/library/functions.html#bool] = True) → Bytes[<depends on input>]

	Takes a variable number of args as input, and returns the ABIv2-encoded bytestring. Used for packing arguments to raw_call, EIP712 and other cases where a consistent and efficient serialization method is needed.
Once this function has seen more use we provisionally plan to put it into the ethereum.abi namespace.

	*args: Arbitrary arguments

	ensure_tuple: If set to True, ensures that even a single argument is encoded as a tuple. In other words, bytes gets encoded as (bytes,), and (bytes,) gets encoded as ((bytes,),) This is the calling convention for Vyper and Solidity functions. Except for very specific use cases, this should be set to True. Must be a literal.

	method_id: A literal hex or Bytes[4] value to append to the beginning of the abi-encoded bytestring.

Returns a bytestring whose max length is determined by the arguments. For example, encoding a Bytes[32] results in a Bytes[64] (first word is the length of the bytestring variable).

@external
@view
def foo() -> Bytes[132]:
 x: uint256 = 1
 y: Bytes[32] = b"234"
 return _abi_encode(x, y, method_id=method_id("foo()"))

>>> ExampleContract.foo().hex()
"c2985578"
"0001"
"0040"
"0003"
"32333400"

	
_abi_decode(b: Bytes, output_type: type_, unwrap_tuple: bool [https://docs.python.org/3.10/library/functions.html#bool] = True) → Any

	Takes a byte array as input, and returns the decoded values according to the specified output types. Used for unpacking ABIv2-encoded values.
Once this function has seen more use we provisionally plan to put it into the ethereum.abi namespace.

	b: A byte array of a length that is between the minimum and maximum ABIv2 size bounds of the output type.

	output_type: Name of the output type, or tuple of output types, to be decoded.

	unwrap_tuple: If set to True, the input is decoded as a tuple even if only one output type is specified. In other words, _abi_decode(b, Bytes[32]) gets decoded as (Bytes[32],). This is the convention for ABIv2-encoded values generated by Vyper and Solidity functions. Except for very specific use cases, this should be set to True. Must be a literal.

Returns the decoded value(s), with type as specified by output_type.

@external
@view
def foo(someInput: Bytes[128]) -> (uint256, Bytes[32]):
 x: uint256 = empty(uint256)
 y: Bytes[32] = empty(Bytes[32])
 x, y = _abi_decode(someInput, (uint256, Bytes[32]))
 return x, y

	
print(*args, hardhat_compat=False) → None [https://docs.python.org/3.10/library/constants.html#None]

	“prints” the arguments by issuing a static call to the “console” address, 0x000000000000000000636F6E736F6C652E6C6F67. This is supported by some smart contract development frameworks.

The default mode works natively with titanoboa. For hardhat-style frameworks, use hardhat_compat=True).

Note

Issuing of the static call is NOT mode-dependent (that is, it is not removed from production code), although the compiler will issue a warning whenever print is used.

Interfaces

An interface is a set of function definitions used to enable communication between smart contracts. A contract interface defines all of that contract’s externally available functions. By importing the interface, your contract now knows how to call these functions in other contracts.

Declaring and using Interfaces

Interfaces can be added to contracts either through inline definition, or by importing them from a separate file.

The interface keyword is used to define an inline external interface:

interface FooBar:
 def calculate() -> uint256: view
 def test1(): nonpayable

The defined interface can then be used to make external calls, given a contract address:

@external
def test(foobar: FooBar):
 foobar.calculate()

The interface name can also be used as a type annotation for storage variables. You then assign an address value to the variable to access that interface. Note that casting an address to an interface is possible, e.g. FooBar(<address_var>):

foobar_contract: FooBar

@external
def __init__(foobar_address: address):
 self.foobar_contract = FooBar(foobar_address)

@external
def test():
 self.foobar_contract.calculate()

Specifying payable or nonpayable annotation indicates that the call made to the external contract will be able to alter storage, whereas the view pure call will use a STATICCALL ensuring no storage can be altered during execution. Additionally, payable allows non-zero value to be sent along with the call.

interface FooBar:
 def calculate() -> uint256: pure
 def query() -> uint256: view
 def update(): nonpayable
 def pay(): payable

@external
def test(foobar: FooBar):
 foobar.calculate() # cannot change storage
 foobar.query() # cannot change storage, but reads itself
 foobar.update() # storage can be altered
 foobar.pay(value=1) # storage can be altered, and value can be sent

Vyper offers the option to set the following additional keyword arguments when making external calls:

	Keyword

	Description

	gas

	Specify gas value for the call

	value

	Specify amount of ether sent with the call

	skip_contract_check

	Drop EXTCODESIZE and RETURNDATASIZE checks

	default_return_value

	Specify a default return value if no value is returned

The default_return_value parameter can be used to handle ERC20 tokens affected by the missing return value bug in a way similar to OpenZeppelin’s safeTransfer for Solidity:

IERC20(USDT).transfer(msg.sender, 1, default_return_value=True) # returns True
IERC20(USDT).transfer(msg.sender, 1) # reverts because nothing returned

Warning

When skip_contract_check=True is used and the called function returns data (ex.: x: uint256 = SomeContract.foo(skip_contract_check=True), no guarantees are provided by the compiler as to the validity of the returned value. In other words, it is undefined behavior what happens if the called contract did not exist. In particular, the returned value might point to garbage memory. It is therefore recommended to only use skip_contract_check=True to call contracts which have been manually ensured to exist at the time of the call.

Importing Interfaces

Interfaces are imported with import or from ... import statements.

Imported interfaces are written using standard Vyper syntax. The body of each function is ignored when the interface is imported. If you are defining a standalone interface, it is normally specified by using a pass statement:

@external
def test1():
 pass

@external
def calculate() -> uint256:
 pass

You can also import a fully implemented contract and Vyper will automatically convert it to an interface. It is even possible for a contract to import itself to gain access to its own interface.

import greeter as Greeter

name: public(String[10])

@external
def __init__(_name: String[10]):
 self.name = _name

@view
@external
def greet() -> String[16]:
 return concat("Hello ", Greeter(msg.sender).name())

Imports via import

With absolute import statements, you must include an alias as a name for the imported package. In the following example, failing to include as Foo will raise a compile error:

import contract.foo as Foo

Imports via from ... import

Using from you can perform both absolute and relative imports. You may optionally include an alias - if you do not, the name of the interface will be the same as the file.

without an alias
from contract import foo

with an alias
from contract import foo as Foo

Relative imports are possible by prepending dots to the contract name. A single leading dot indicates a relative import starting with the current package. Two leading dots indicate a relative import from the parent of the current package:

from . import foo
from ..interfaces import baz

Searching For Interface Files

When looking for a file to import, Vyper will first search relative to the same folder as the contract being compiled. For absolute imports, it also searches relative to the root path for the project. Vyper checks for the file name with a .vy suffix first, then .json.

When using the command line compiler, the root path defaults to the current working directory. You can change it with the -p flag:

$ vyper my_project/contracts/my_contract.vy -p my_project

In the above example, the my_project folder is set as the root path. A contract cannot perform a relative import that goes beyond the top-level folder.

Built-in Interfaces

Vyper includes common built-in interfaces such as ERC20 [https://eips.ethereum.org/EIPS/eip-20] and ERC721 [https://eips.ethereum.org/EIPS/eip-721]. These are imported from ethereum.ercs:

from ethereum.ercs import IERC20

implements: IERC20

You can see all the available built-in interfaces in the Vyper GitHub [https://github.com/vyperlang/vyper/tree/master/vyper/builtins/interfaces] repo.

Implementing an Interface

You can define an interface for your contract with the implements statement:

import an_interface as FooBarInterface

implements: FooBarInterface

This imports the defined interface from the vyper file at an_interface.vy (or an_interface.json if using ABI json interface type) and ensures your current contract implements all the necessary external functions. If any interface functions are not included in the contract, it will fail to compile. This is especially useful when developing contracts around well-defined standards such as ERC20.

Note

Interfaces that implement functions with return values that require an upper bound (e.g. Bytes, DynArray, or String), the upper bound defined in the interface represents the lower bound of the implementation. Assuming a function my_func returns a value String[1] in the interface, this would mean for the implementation function of my_func that the return value must have at least length 1. This behavior might change in the future.

Extracting Interfaces

Vyper has a built-in format option to allow you to make your own Vyper interfaces easily.

$ vyper -f interface examples/voting/ballot.vy

Functions

@view
@external
def delegated(addr: address) -> bool:
 pass

...

If you want to do an external call to another contract, Vyper provides an external interface extract utility as well.

$ vyper -f external_interface examples/voting/ballot.vy

External Contracts
interface Ballot:
 def delegated(addr: address) -> bool: view
 def directlyVoted(addr: address) -> bool: view
 def giveRightToVote(voter: address): nonpayable
 def forwardWeight(delegate_with_weight_to_forward: address): nonpayable
 # ...

The output can then easily be copy-pasted to be consumed.

Event Logging

Vyper can log events to be caught and displayed by user interfaces.

Example of Logging

This example is taken from the sample ERC20 contract [https://github.com/vyperlang/vyper/blob/master/examples/tokens/ERC20.vy] and shows the basic flow of event logging:

Events of the token.
event Transfer:
 sender: indexed(address)
 receiver: indexed(address)
 value: uint256

event Approval:
 owner: indexed(address)
 spender: indexed(address)
 value: uint256

Transfer some tokens from message sender to another address
def transfer(_to : address, _value : uint256) -> bool:

 ... Logic here to do the real work ...

 # All done, log the event for listeners
 log Transfer(msg.sender, _to, _value)

Let’s look at what this is doing.

	We declare two event types to log. The two events are similar in that they contain two indexed address fields. Indexed fields do not make up part of the event data itself, but can be searched by clients that want to catch the event. Also, each event contains one single data field, in each case called value. Events can contain several arguments with any names desired.

	In the transfer function, after we do whatever work is necessary, we log the event. We pass three arguments, corresponding with the three arguments of the Transfer event declaration.

Clients listening to the events will declare and handle the events they are interested in using a library such as web3.js [https://solidity.readthedocs.io/en/latest/contracts.html#events]:

var abi = /* abi as generated by the compiler */;
var MyToken = web3.eth.contract(abi);
var myToken = MyToken.at("0x1234...ab67" /* address */);

// watch for changes in the callback
var event = myToken.Transfer(function(error, result) {
 if (!error) {
 var args = result.returnValues;
 console.log('value transferred = ', args._amount);
 }
});

In this example, the listening client declares the event to listen for. Any time the contract sends this log event, the callback will be invoked.

Declaring Events

Let’s look at an event declaration in more detail.

event Transfer:
 sender: indexed(address)
 receiver: indexed(address)
 value: uint256

The EVM currently has five opcodes for emitting event logs: LOG0, LOG1, LOG2, LOG3, and LOG4.
These opcodes can be used to create log records, where each log record consists of both topics and data.
Topics are 32-byte ‘’words’’ that are used to describe what is happening in an event.
While topics are searchable, data is not.
Event data is however not limited, which means that you can include large or complicated data like arrays or strings.
Different opcodes (LOG0 through LOG4) allow for different numbers of topics.
For instance, LOG1 includes one topic, LOG2 includes two topics, and so on.
Event declarations look similar to struct declarations, containing one or more arguments that are passed to the event. Typical events will contain two kinds of arguments:

	Indexed arguments (topics), which can be searched for by listeners. Each indexed argument is identified by the indexed keyword. Here, each indexed argument is an address. You can have up to four indexed arguments (LOG4), but indexed arguments are not passed directly to listeners, although some of this information (such as the sender) may be available in the listener’s results object.

	Value arguments (data), which are passed through to listeners. You can have any number of value arguments and they can have arbitrary names, but each is limited by the EVM to be no more than 32 bytes.

Note that the first topic of a log record consists of the signature of the name of the event that occurred, including the types of its parameters.
It is also possible to create an event with no arguments. In this case, use the pass statement:

event Foo: pass

Logging Events

Once an event is declared, you can log (send) events. You can send events as many times as you want to. Please note that events sent do not take state storage and thus do not cost gas: this makes events a good way to save some information. However, the drawback is that events are not available to contracts, only to clients.

Logging events is done using the log statement:

log Transfer(msg.sender, _to, _amount)

The order and types of arguments given must match the order of arguments used when declaring the event.

Listening for Events

In the example listener above, the result arg actually passes a large amount of information [https://web3js.readthedocs.io/en/v1.2.6/web3-eth-contract.html#contract-events-return]. Here we’re most interested in result.returnValues. This is an object with properties that match the properties declared in the event. Note that this object does not contain the indexed properties, which can only be searched in the original myToken.Transfer that created the callback.

NatSpec Metadata

Vyper contracts can use a special form of docstring to provide rich documentation for functions, return variables and more. This special form is named the Ethereum Natural Language Specification Format (NatSpec).

This documentation is segmented into developer-focused messages and end-user-facing messages. These messages may be shown to the end user (the human) at the time that they will interact with the contract (i.e. sign a transaction).

Example

Vyper supports structured documentation for contracts and external functions using the doxygen notation format.

Note

The compiler does not parse docstrings of internal functions. You are welcome to NatSpec in comments for internal functions, however they are not processed or included in the compiler output.

"""
@title A simulator for Bug Bunny, the most famous Rabbit
@license MIT
@author Warned Bros
@notice You can use this contract for only the most basic simulation
@dev
 Simply chewing a carrot does not count, carrots must pass
 the throat to be considered eaten
"""

@external
@payable
def doesEat(food: string[30], qty: uint256) -> bool:
 """
 @notice Determine if Bugs will accept `qty` of `food` to eat
 @dev Compares the entire string and does not rely on a hash
 @param food The name of a food to evaluate (in English)
 @param qty The number of food items to evaluate
 @return True if Bugs will eat it, False otherwise
 """

Tags

All tags are optional. The following table explains the purpose of each NatSpec tag and where it may be used:

	Tag

	Description

	Context

	@title

	Title that describes the contract

	contract

	@license

	License of the contract

	contract

	@author

	Name of the author

	contract, function

	@notice

	Explain to an end user what this does

	contract, function

	@dev

	Explain to a developer any extra details

	contract, function

	@param

	Documents a single parameter

	function

	@return

	Documents one or all return variable(s)

	function

	@custom:...

	Custom tag, semantics is application-defined

	contract, function

Some rules / restrictions:

	A single tag description may span multiple lines. All whitespace between lines is interpreted as a single space.

	If a docstring is included with no NatSpec tags, it is interpreted as a @notice.

	Each use of @param must be followed by the name of an input argument. Including invalid or duplicate argument names raises a NatSpecSyntaxException.

	The preferred use of @return is one entry for each output value, however you may also use it once for all outputs. Including more @return values than output values raises a NatSpecSyntaxException.

Documentation Output

When parsed by the compiler, documentation such as the one from the above example will produce two different JSON outputs. One is meant to be consumed by the end user as a notice when a function is executed and the other to be used by the developer.

If the above contract is saved as carrots.vy then you can generate the documentation using:

$ vyper -f userdoc,devdoc carrots.vy

User Documentation

The above documentation will produce the following user documentation JSON as output:

{
 "methods": {
 "doesEat(string,uint256)": {
 "notice": "Determine if Bugs will accept `qty` of `food` to eat"
 }
 },
 "notice": "You can use this contract for only the most basic simulation"
}

Note that the key by which to find the methods is the function’s
canonical signature as defined in the contract ABI, not simply the function’s
name.

Developer Documentation

Apart from the user documentation file, a developer documentation JSON
file should also be produced and should look like this:

{
 "author": "Warned Bros",
 "license": "MIT",
 "details": "Simply chewing a carrot does not count, carrots must pass the throat to be considered eaten",
 "methods": {
 "doesEat(string,uint256)": {
 "details" : "Compares the entire string and does not rely on a hash",
 "params": {
 "food": "The name of a food to evaluate (in English)",
 "qty": "The number of food items to evaluate"
 },
 "returns": {
 "_0": "True if Bugs will eat it, False otherwise"
 }
 }
 },
 "title" : "A simulator for Bug Bunny, the most famous Rabbit"
}

Compiling a Contract

Command-Line Compiler Tools

Vyper includes the following command-line scripts for compiling contracts:

	vyper: Compiles vyper contract files into IR or bytecode

	vyper-json: Provides a JSON interface to the compiler

Note

The --help flag gives verbose explanations of how to use each of these scripts.

vyper

vyper provides command-line access to the compiler. It can generate various outputs including simple binaries, ASTs, interfaces and source mappings.

To compile a contract:

$ vyper yourFileName.vy

Include the -f flag to specify which output formats to return. Use vyper --help for a full list of output options.

$ vyper -f abi,abi_python,bytecode,bytecode_runtime,interface,external_interface,ast,annotated_ast,ir,ir_json,ir_runtime,hex-ir,asm,opcodes,opcodes_runtime,source_map,method_identifiers,userdoc,devdoc,metadata,combined_json,layout yourFileName.vy

Note

The opcodes and opcodes_runtime output of the compiler has been returning incorrect opcodes since 0.2.0 due to a lack of 0 padding (patched via PR 3735 [https://github.com/vyperlang/vyper/pull/3735]). If you rely on these functions for debugging, please use the latest patched versions.

The -p flag allows you to set a root path that is used when searching for interface files to import. If none is given, it will default to the current working directory. See Searching For Interface Files for more information.

$ vyper -p yourProject yourProject/yourFileName.vy

Storage Layout

To display the default storage layout for a contract:

$ vyper -f layout yourFileName.vy

This outputs a JSON object detailing the locations for all state variables as determined by the compiler.

To override the default storage layout for a contract:

$ vyper --storage-layout-file storageLayout.json yourFileName.vy

The input to the --storage-layout-file flag must match the format of the .storage_layout field from the vyper -f layout command.

vyper-json

vyper-json provides a JSON interface for the compiler. It expects a JSON formatted input and returns the compilation result in a JSON formatted output.

To compile from JSON supplied via stdin:

$ vyper-json

To compile from a JSON file:

$ vyper-json yourProject.json

By default, the output is sent to stdout. To redirect to a file, use the -o flag:

$ vyper-json -o compiled.json

Importing Interfaces

vyper-json searches for imported interfaces in the following sequence:

	Interfaces defined in the interfaces field of the input JSON.

	Derived interfaces generated from contracts in the sources field of the input JSON.

	(Optional) The local filesystem, if a root path was explicitly declared via the -p flag.

See Searching For Interface Files for more information on Vyper’s import system.

Online Compilers

Try VyperLang!

Try VyperLang! [https://try.vyperlang.org] is a JupterHub instance hosted by the Vyper team as a sandbox for developing and testing contracts in Vyper. It requires github for login, and supports deployment via the browser.

Remix IDE

Remix IDE [https://remix.ethereum.org] is a compiler and JavaScript VM for developing and testing contracts in Vyper, as well as Solidity.

Note

While the Vyper version of the Remix IDE compiler is updated on a regular basis, it might be a bit behind the latest version found in the master branch of the repository. Make sure the byte code matches the output from your local compiler.

Compiler Optimization Modes

The vyper CLI tool accepts an optimization mode "none", "codesize", or "gas" (default). It can be set using the --optimize flag. For example, invoking vyper --optimize codesize MyContract.vy will compile the contract, optimizing for code size. As a rough summary of the differences between gas and codesize mode, in gas optimized mode, the compiler will try to generate bytecode which minimizes gas (up to a point), including:

	using a sparse selector table which optimizes for gas over codesize

	inlining some constants, and

	trying to unroll some loops, especially for data copies.

In codesize optimized mode, the compiler will try hard to minimize codesize by

	using a dense selector table

	out-lining code, and

	using more loops for data copies.

Setting the Target EVM Version

When you compile your contract code, you can specify the target Ethereum Virtual Machine version to compile for, to access or avoid particular features. You can specify the version either with a source code pragma or as a compiler option. It is recommended to use the compiler option when you want flexibility (for instance, ease of deploying across different chains), and the source code pragma when you want bytecode reproducibility (for instance, when verifying code on a block explorer).

Note

If the evm version specified by the compiler options conflicts with the source code pragma, an exception will be raised and compilation will not continue.

For instance, the adding the following pragma to a contract indicates that it should be compiled for the “shanghai” fork of the EVM.

#pragma evm-version shanghai

Warning

Compiling for the wrong EVM version can result in wrong, strange, or failing behavior. Please ensure, especially if running a private chain, that you use matching EVM versions.

When compiling via the vyper CLI, you can specify the EVM version option using the --evm-version flag:

$ vyper --evm-version [VERSION]

When using the JSON interface, you can include the "evmVersion" key within the "settings" field:

{
 "settings": {
 "evmVersion": "[VERSION]"
 }
}

Target Options

The following is a list of supported EVM versions, and changes in the compiler introduced with each version. Backward compatibility is not guaranteed between each version. In general, the compiler team maintains an informal policy that the compiler will support 3 years of hard fork rulesets, but this policy may be revisited as appropriate.

	
london

	

	
paris

	
	block.difficulty is deprecated in favor of its new alias, block.prevrandao.

	
shanghai(default)

	
	The PUSH0 opcode is automatically generated by the compiler instead of PUSH1 0

	
cancun(experimental)

	
	The transient keyword allows declaration of variables which live in transient storage

	Functions marked with @nonreentrant are protected with TLOAD/TSTORE instead of SLOAD/SSTORE

	The MCOPY opcode will be generated automatically by the compiler for most memory operations.

Compiler Input and Output JSON Description

Especially when dealing with complex or automated setups, the recommended way to compile is to use vyper-json and the JSON-input-output interface.

Where possible, the Vyper JSON compiler formats follow those of Solidity [https://solidity.readthedocs.io/en/latest/using-the-compiler.html#compiler-input-and-output-json-description].

Input JSON Description

The following example describes the expected input format of vyper-json. Comments are of course not permitted and used here only for explanatory purposes.

{
 // Required: Source code language. Must be set to "Vyper".
 "language": "Vyper",
 // Required
 // Source codes given here will be compiled.
 "sources": {
 "contracts/foo.vy": {
 // Optional: keccak256 hash of the source file
 "keccak256": "0x234...",
 // Required: literal contents of the source file
 "content": "@external\ndef foo() -> bool:\n return True"
 }
 },
 // Optional
 // Interfaces given here are made available for import by the sources
 // that are compiled. If the suffix is ".vy", the compiler will expect
 // a contract-as-interface using proper Vyper syntax. If the suffix is
 // "abi" the compiler will expect an ABI object.
 "interfaces": {
 "contracts/bar.vy": {
 "content": ""
 },
 "contracts/baz.json": {
 "abi": []
 }
 },
 // Optional
 "settings": {
 "evmVersion": "shanghai", // EVM version to compile for. Can be london, paris, shanghai (default) or cancun (experimental!).
 // optional, optimization mode
 // defaults to "gas". can be one of "gas", "codesize", "none",
 // false and true (the last two are for backwards compatibility).
 "optimize": "gas",
 // optional, whether or not the bytecode should include Vyper's signature
 // defaults to true
 "bytecodeMetadata": true,
 // The following is used to select desired outputs based on file names.
 // File names are given as keys, a star as a file name matches all files.
 // Outputs can also follow the Solidity format where second level keys
 // denoting contract names - all 2nd level outputs are applied to the file.
 //
 // To select all possible compiler outputs: "outputSelection: { '*': ["*"] }"
 // Note that this might slow down the compilation process needlessly.
 //
 // The available output types are as follows:
 //
 // abi - The contract ABI
 // ast - Abstract syntax tree
 // interface - Derived interface of the contract, in proper Vyper syntax
 // ir - intermediate representation of the code
 // userdoc - Natspec user documentation
 // devdoc - Natspec developer documentation
 // evm.bytecode.object - Bytecode object
 // evm.bytecode.opcodes - Opcodes list
 // evm.deployedBytecode.object - Deployed bytecode object
 // evm.deployedBytecode.opcodes - Deployed opcodes list
 // evm.deployedBytecode.sourceMap - Solidity-style source mapping
 // evm.deployedBytecode.sourceMapFull - Deployed source mapping (useful for debugging)
 // evm.methodIdentifiers - The list of function hashes
 //
 // Using `evm`, `evm.bytecode`, etc. will select every target part of that output.
 // Additionally, `*` can be used as a wildcard to request everything.
 // Note that the sourceMapFull.pc_ast_map is the recommended source map to use;
 // the other types are included for legacy and compatibility reasons.
 //
 "outputSelection": {
 "*": ["evm.bytecode", "abi"], // Enable the abi and bytecode outputs for every single contract
 "contracts/foo.vy": ["ast"] // Enable the ast output for contracts/foo.vy
 }
 }
}

Output JSON Description

The following example describes the output format of vyper-json. Comments are of course not permitted and used here only for explanatory purposes.

{
 // The compiler version used to generate the JSON
 "compiler": "vyper-0.1.0b12",
 // Optional: not present if no errors/warnings were encountered
 "errors": [
 {
 // Optional: Location within the source file.
 "sourceLocation": {
 "file": "source_file.vy",
 "lineno": 5,
 "col_offset": 11
 },
 // Mandatory: Exception type, such as "JSONError", "StructureException", etc.
 "type": "TypeMismatch",
 // Mandatory: Component where the error originated, such as "json", "compiler", "vyper", etc.
 "component": "compiler",
 // Mandatory ("error" or "warning")
 "severity": "error",
 // Mandatory
 "message": "Unsupported type conversion: int128 to bool"
 // Optional: the message formatted with source location
 "formattedMessage": "line 5:11 Unsupported type conversion: int128 to bool"
 }
],
 // This contains the file-level outputs. Can be limited/filtered by the outputSelection settings.
 "sources": {
 "source_file.vy": {
 // Identifier of the source (used in source maps)
 "id": 0,
 // The AST object
 "ast": {},
 }
 },
 // This contains the contract-level outputs. Can be limited/filtered by the outputSelection settings.
 "contracts": {
 "source_file.vy": {
 // The contract name will always be the file name without a suffix
 "source_file": {
 // The Ethereum Contract ABI.
 // See https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI
 "abi": [],
 // Natspec developer documentation
 "devdoc": {},
 // Intermediate representation (string)
 "ir": "",
 // Natspec developer documentation
 "userdoc": {},
 // EVM-related outputs
 "evm": {
 "bytecode": {
 // The bytecode as a hex string.
 "object": "00fe",
 // Opcodes list (string)
 "opcodes": ""
 },
 "deployedBytecode": {
 // The deployed bytecode as a hex string.
 "object": "00fe",
 // Deployed opcodes list (string)
 "opcodes": "",
 // The deployed source mapping as a string.
 "sourceMap": ""
 },
 // The list of function hashes
 "methodIdentifiers": {
 "delegate(address)": "5c19a95c"
 }
 }
 }
 }
 }
}

Errors

Each error includes a component field, indicating the stage at which it occurred:

	json: Errors that occur while parsing the input JSON. Usually, a result of invalid JSON or a required value that is missing.

	parser: Errors that occur while parsing the contracts. Usually, a result of invalid Vyper syntax.

	compiler: Errors that occur while compiling the contracts.

	vyper: Unexpected errors that occur within Vyper. If you receive an error of this type, please open an issue.

You can also use the --traceback flag to receive a standard Python traceback when an error is encountered.

Compiler Exceptions

Vyper raises one or more of the following exceptions when an issue is encountered while compiling a contract.

Whenever possible, exceptions include a source highlight displaying the location
of the error within the code:

vyper.exceptions.VariableDeclarationException: line 79:17 Persistent variable undeclared: highstBid
 78 # If bid is less than highest bid, bid fails
---> 79 if (value <= self.highstBid):
-------------------------^
 80 return False

	
exception ArgumentException

	Raises when calling a function with invalid arguments, for example an incorrect number of positional arguments or an invalid keyword argument.

	
exception CallViolation

	Raises on an illegal function call, such as attempting to call between two external functions.

	
exception ArrayIndexException

	Raises when an array index is out of bounds.

	
exception EventDeclarationException

	Raises when an event declaration is invalid.

	
exception EvmVersionException

	Raises when a contract contains an action that cannot be performed with the active EVM ruleset.

	
exception FunctionDeclarationException

	Raises when a function declaration is invalid, for example because of incorrect or mismatched return values.

	
exception ImmutableViolation

	Raises when attempting to perform a change a variable, constant or definition that cannot be changed. For example, trying to update a constant, or trying to assign to a function definition.

	
exception InterfaceViolation

	Raises when an interface is not fully implemented.

	
exception InvalidAttribute

	Raises on a reference to an attribute that does not exist.

	
exception InvalidLiteral

	Raises when no valid type can be found for a literal value.

@external
def foo():
 bar: decimal = 3.123456789123456789

This example raises InvalidLiteral because the given literal value has too many decimal places and so cannot be assigned any valid Vyper type.

	
exception InvalidOperation

	Raises when using an invalid operator for a given type.

@external
def foo():
 a: String[10] = "hello" * 2

This example raises InvalidOperation because multiplication is not possible on string types.

	
exception InvalidReference

	Raises on an invalid reference to an existing definition.

baz: int128

@external
def foo():
 bar: int128 = baz

This example raises InvalidReference because baz is a storage variable. The reference to it should be written as self.baz.

	
exception InvalidType

	Raises when using an invalid literal value for the given type.

@external
def foo():
 bar: int128 = 3.5

This example raises InvalidType because 3.5 is a valid literal value, but cannot be cast as int128.

	
exception IteratorException

	Raises when an iterator is constructed or used incorrectly.

	
exception JSONError

	Raises when the compiler JSON input is malformed.

	
exception NamespaceCollision

	Raises when attempting to assign a variable to a name that is already in use.

	
exception NatSpecSyntaxException

	Raises when a contract contains an invalid NatSpec docstring.

vyper.exceptions.SyntaxException: line 14:5 No description given for tag '@param'
 13 @dev the feet are sticky like rice
---> 14 @param
-------------^
 15 @return always True

	
exception NonPayableViolation

	Raises when attempting to access msg.value from within a function that has not been marked as @payable.

@public
def _foo():
 bar: uint256 = msg.value

	
exception OverflowException

	Raises when a numeric value is out of bounds for the given type.

	
exception StateAccessViolation

	Raises when attempting to perform a modifying action within view-only or stateless context. For example, writing to storage in a @view function, reading from storage in a @pure function.

	
exception StructureException

	Raises on syntax that is parsable, but invalid in some way.

vyper.exceptions.StructureException: line 181:0 Invalid top-level statement
 180
---> 181 '''
---------^
 182

	
exception SyntaxException

	Raises on invalid syntax that cannot be parsed.

vyper.exceptions.SyntaxException: line 4:20 invalid syntax
 3 struct Bid:
---> 4 blindedBid bytes32
---------------------------^
 5 deposit: uint256

	
exception TypeMismatch

	Raises when attempting to perform an action between two or more objects with known, dislike types.

@external
def foo(:
 bar: int128 = 3
 foo: decimal = 4.2

 if foo + bar > 4:
 pass

foo has a type of int128 and bar has a type of decimal, so attempting to add them together raises a TypeMismatch.

	
exception UndeclaredDefinition

	Raises when attempting to access an object that has not been declared.

	
exception VariableDeclarationException

	Raises on an invalid variable declaration.

vyper.exceptions.VariableDeclarationException: line 79:17 Persistent variable undeclared: highstBid
 78 # If bid is less than highest bid, bid fails
---> 79 if (value <= self.highstBid):
-------------------------^
 80 return False

	
exception VersionException

	Raises when a contract version string is malformed or incompatible with the current compiler version.

	
exception ZeroDivisionException

	Raises when a divide by zero or modulo zero situation arises.

CompilerPanic

	
exception CompilerPanic

	$ vyper v.vy
Error compiling: v.vy
vyper.exceptions.CompilerPanic: Number of times repeated
must be a constant nonzero positive integer: 0 Please create an issue.

A compiler panic error indicates that there is a problem internally to the compiler and an issue should be reported right
away on the Vyper Github page. Open an issue if you are experiencing this error. Please Open an Issue [https://github.com/vyperlang/vyper/issues]

Deploying a Contract

Once you are ready to deploy your contract to a public test net or the main net, you have several options:

	Take the bytecode generated by the vyper compiler and manually deploy it through mist or geth:

vyper yourFileName.vy
returns bytecode

	Take the byte code and ABI and deploy it with your current browser on myetherwallet’s [https://www.myetherwallet.com/] contract menu:

vyper -f abi yourFileName.vy
returns ABI

	Use the remote compiler provided by the Remix IDE [https://remix.ethereum.org] to compile and deploy your contract on your net of choice. Remix also provides a JavaScript VM to test deploy your contract.

Note

While the vyper version of the Remix IDE compiler is updated on a regular basis it might be a bit behind the latest version found in the master branch of the repository. Make sure the byte code matches the output from your local compiler.

Testing a Contract

For testing Vyper contracts we recommend the use of pytest [https://docs.pytest.org/en/latest/contents.html] along with one of the following packages:

	Brownie [https://github.com/iamdefinitelyahuman/brownie]: A development and testing framework for smart contracts targeting the Ethereum Virtual Machine

	Ethereum Tester [https://github.com/ethereum/eth-tester]: A tool suite for testing ethereum applications

Example usage for each package is provided in the sections listed below.

	Testing with Brownie
	Getting Started

	Writing a Basic Test

	Testing Events

	Handling Reverted Transactions

	Testing with Ethereum Tester
	Getting Started

	Writing a Basic Test

	Events and Failed Transactions

Testing with Brownie

Brownie [https://github.com/iamdefinitelyahuman/brownie] is a Python-based development and testing framework for smart contracts. It includes a pytest plugin with fixtures that simplify testing your contract.

This section provides a quick overview of testing with Brownie. To learn more, you can view the Brownie documentation on writing unit tests [https://eth-brownie.readthedocs.io/en/stable/tests-pytest-intro.html] or join the Ethereum Python Dev Discord [https://discord.gg/abJEARdx3Q] #brownie channel.

Getting Started

In order to use Brownie for testing you must first initialize a new project [https://eth-brownie.readthedocs.io/en/stable/init.html]. Create a new directory for the project, and from within that directory type:

$ brownie init

This will create an empty project structure [https://eth-brownie.readthedocs.io/en/stable/structure.html#structure] within the directory. Store your contract sources within the project’s contracts/ directory and your tests within tests/.

Writing a Basic Test

Assume the following simple contract Storage.vy. It has a single integer variable and a function to set that value.

storage.vy

 1#pragma version >0.3.10
 2
 3storedData: public(int128)
 4
 5@deploy
 6def __init__(_x: int128):
 7 self.storedData = _x
 8
 9@external
10def set(_x: int128):
11 self.storedData = _x

We create a test file tests/test_storage.py where we write our tests in pytest style.

test_storage.py

 1import pytest
 2
 3INITIAL_VALUE = 4
 4
 5
 6@pytest.fixture
 7def storage_contract(Storage, accounts):
 8 # deploy the contract with the initial value as a constructor argument
 9 yield Storage.deploy(INITIAL_VALUE, {'from': accounts[0]})
10
11
12def test_initial_state(storage_contract):
13 # Check if the constructor of the contract is set up properly
14 assert storage_contract.storedData() == INITIAL_VALUE
15
16
17def test_set(storage_contract, accounts):
18 # set the value to 10
19 storage_contract.set(10, {'from': accounts[0]})
20 assert storage_contract.storedData() == 10 # Directly access storedData
21
22 # set the value to -5
23 storage_contract.set(-5, {'from': accounts[0]})
24 assert storage_contract.storedData() == -5

In this example we are using two fixtures which are provided by Brownie:

	accounts provides access to the Accounts [https://eth-brownie.readthedocs.io/en/stable/api-network.html#brownie.network.account.Accounts] container, containing all of your local accounts

	Storage is a dynamically named fixture that provides access to a ContractContainer [https://eth-brownie.readthedocs.io/en/stable/api-network.html#brownie.network.contract.ContractContainer] object, used to deploy your contract

Note

To run the tests, use the brownie test command from the root directory of your project.

Testing Events

For the remaining examples, we expand our simple storage contract to include an event and two conditions for a failed transaction: advanced_storage.vy

advanced_storage.vy

 1#pragma version >0.3.10
 2
 3event DataChange:
 4 setter: indexed(address)
 5 value: int128
 6
 7storedData: public(int128)
 8
 9@deploy
10def __init__(_x: int128):
11 self.storedData = _x
12
13@external
14def set(_x: int128):
15 assert _x >= 0, "No negative values"
16 assert self.storedData < 100, "Storage is locked when 100 or more is stored"
17 self.storedData = _x
18 log DataChange(msg.sender, _x)
19
20@external
21def reset():
22 self.storedData = 0

To test events, we examine the TransactionReceipt [https://eth-brownie.readthedocs.io/en/stable/api-network.html#brownie.network.transaction.TransactionReceipt] object which is returned after each successful transaction. It contains an events [https://eth-brownie.readthedocs.io/en/stable/api-network.html#brownie.network.event.EventDict] member with information about events that fired.

 1import brownie
 2
 3INITIAL_VALUE = 4
 4
 5
 6@pytest.fixture
 7def adv_storage_contract(AdvancedStorage, accounts):
 8 yield AdvancedStorage.deploy(INITIAL_VALUE, {'from': accounts[0]})
 9
10def test_events(adv_storage_contract, accounts):
11 tx1 = adv_storage_contract.set(10, {'from': accounts[0]})
12 tx2 = adv_storage_contract.set(20, {'from': accounts[1]})
13 tx3 = adv_storage_contract.reset({'from': accounts[0]})
14
15 # Check log contents
16 assert len(tx1.events) == 1
17 assert tx1.events[0]['value'] == 10
18
19 assert len(tx2.events) == 1
20 assert tx2.events[0]['setter'] == accounts[1]
21
22 assert not tx3.events # tx3 does not generate a log

Handling Reverted Transactions

Transactions that revert raise a VirtualMachineError [https://eth-brownie.readthedocs.io/en/stable/api-brownie.html#brownie.exceptions.VirtualMachineError] exception. To write assertions around this you can use brownie.reverts [https://eth-brownie.readthedocs.io/en/stable/api-test.html#brownie.test.plugin.RevertContextManager] as a context manager. It functions very similarly to pytest.raises [https://docs.pytest.org/en/latest/reference/reference.html#pytest.raises].

brownie.reverts [https://eth-brownie.readthedocs.io/en/stable/api-test.html#brownie.test.plugin.RevertContextManager] optionally accepts a string as an argument. If given, the error string returned by the transaction must match it in order for the test to pass.

 1import brownie
 2
 3INITIAL_VALUE = 4
 4
 5
 6@pytest.fixture
 7def adv_storage_contract(AdvancedStorage, accounts):
 8 yield AdvancedStorage.deploy(INITIAL_VALUE, {'from': accounts[0]})
 9
10
11def test_failed_transactions(adv_storage_contract, accounts):
12 # Try to set the storage to a negative amount
13 with brownie.reverts("No negative values"):
14 adv_storage_contract.set(-10, {"from": accounts[1]})
15
16 # Lock the contract by storing more than 100. Then try to change the value
17
18 adv_storage_contract.set(150, {"from": accounts[1]})
19 with brownie.reverts("Storage is locked when 100 or more is stored"):
20 adv_storage_contract.set(10, {"from": accounts[1]})
21
22 # Reset the contract and try to change the value
23 adv_storage_contract.reset({"from": accounts[1]})
24 adv_storage_contract.set(10, {"from": accounts[1]})
25 assert adv_storage_contract.storedData() == 10

Testing with Ethereum Tester

Ethereum Tester [https://github.com/ethereum/eth-tester] is a tool suite for testing Ethereum based applications.

This section provides a quick overview of testing with eth-tester. To learn more, you can view the documentation at the Github repo [https://github.com/ethereum/eth-tester] or join the Gitter [https://gitter.im/ethereum/eth-tester] channel.

Getting Started

Prior to testing, the Vyper specific contract conversion and the blockchain related fixtures need to be set up. These fixtures will be used in every test file and should therefore be defined in conftest.py [https://docs.pytest.org/en/latest/fixture.html#conftest-py-sharing-fixture-functions].

Note

Since the testing is done in the pytest framework, you can make use of pytest.ini, tox.ini and setup.cfg [https://docs.pytest.org/en/latest/customize.html] and you can use most IDEs’ pytest plugins.

conftest.py

 1import json
 2import logging
 3from contextlib import contextmanager
 4from functools import wraps
 5
 6import hypothesis
 7import pytest
 8import web3.exceptions
 9from eth_tester import EthereumTester, PyEVMBackend
 10from eth_tester.exceptions import TransactionFailed
 11from eth_utils import setup_DEBUG2_logging
 12from eth_utils.toolz import compose
 13from hexbytes import HexBytes
 14from web3 import Web3
 15from web3.contract import Contract
 16from web3.providers.eth_tester import EthereumTesterProvider
 17
 18import vyper.compiler.settings as compiler_settings
 19import vyper.evm.opcodes as evm
 20from tests.utils import working_directory
 21from vyper import compiler
 22from vyper.ast.grammar import parse_vyper_source
 23from vyper.codegen.ir_node import IRnode
 24from vyper.compiler.input_bundle import FilesystemInputBundle, InputBundle
 25from vyper.compiler.settings import (
 26 OptimizationLevel,
 27 Settings,
 28 get_global_settings,
 29 set_global_settings,
 30)
 31from vyper.evm.opcodes import EVM_VERSIONS, version_check
 32from vyper.exceptions import EvmVersionException
 33from vyper.ir import compile_ir, optimizer
 34from vyper.utils import ERC5202_PREFIX, keccak256
 35
 36# Import the base fixtures
 37pytest_plugins = ["tests.fixtures.memorymock"]
 38
 39############
 40# PATCHING #
 41############
 42
 43
 44# disable hypothesis deadline globally
 45hypothesis.settings.register_profile("ci", deadline=None)
 46hypothesis.settings.load_profile("ci")
 47
 48
 49def set_evm_verbose_logging():
 50 logger = logging.getLogger("eth.vm.computation.BaseComputation")
 51 setup_DEBUG2_logging()
 52 logger.setLevel("DEBUG2")
 53
 54
 55# Useful options to comment out whilst working:
 56# set_evm_verbose_logging()
 57#
 58# from vdb import vdb
 59# vdb.set_evm_opcode_debugger()
 60
 61
 62def pytest_addoption(parser):
 63 parser.addoption(
 64 "--optimize",
 65 choices=["codesize", "gas", "none"],
 66 default="gas",
 67 help="change optimization mode",
 68)
 69 parser.addoption("--enable-compiler-debug-mode", action="store_true")
 70 parser.addoption("--experimental-codegen", action="store_true")
 71
 72 parser.addoption(
 73 "--evm-version",
 74 choices=list(EVM_VERSIONS.keys()),
 75 default="shanghai",
 76 help="set evm version",
 77)
 78
 79
 80@pytest.fixture(scope="module")
 81def output_formats():
 82 output_formats = compiler.OUTPUT_FORMATS.copy()
 83 del output_formats["bb"]
 84 del output_formats["bb_runtime"]
 85 del output_formats["cfg"]
 86 del output_formats["cfg_runtime"]
 87 return output_formats
 88
 89
 90@pytest.fixture(scope="session")
 91def optimize(pytestconfig):
 92 flag = pytestconfig.getoption("optimize")
 93 return OptimizationLevel.from_string(flag)
 94
 95
 96@pytest.fixture(scope="session")
 97def debug(pytestconfig):
 98 debug = pytestconfig.getoption("enable_compiler_debug_mode")
 99 assert isinstance(debug, bool)
100 return debug
101
102
103@pytest.fixture(scope="session")
104def experimental_codegen(pytestconfig):
105 ret = pytestconfig.getoption("experimental_codegen")
106 assert isinstance(ret, bool)
107 return ret
108
109
110@pytest.fixture(scope="session")
111def evm_version(pytestconfig):
112 # note: we configure the evm version that we emit code for,
113 # but eth-tester is only configured with the latest mainnet
114 # version. luckily, evms are backwards compatible.
115 evm_version_str = pytestconfig.getoption("evm_version")
116 assert isinstance(evm_version_str, str)
117 return evm_version_str
118
119
120@pytest.fixture(scope="session", autouse=True)
121def global_settings(evm_version, experimental_codegen, optimize, debug):
122 evm.DEFAULT_EVM_VERSION = evm_version
123 compiler_settings.DEFAULT_ENABLE_DECIMALS = True
124 settings = Settings(
125 optimize=optimize,
126 evm_version=evm_version,
127 experimental_codegen=experimental_codegen,
128 debug=debug,
129)
130 set_global_settings(settings)
131
132
133@pytest.fixture(autouse=True)
134def check_venom_xfail(request, experimental_codegen):
135 if not experimental_codegen:
136 return
137
138 marker = request.node.get_closest_marker("venom_xfail")
139 if marker is None:
140 return
141
142 # https://github.com/okken/pytest-runtime-xfail?tab=readme-ov-file#alternatives
143 request.node.add_marker(pytest.mark.xfail(strict=True, **marker.kwargs))
144
145
146@pytest.fixture
147def venom_xfail(request, experimental_codegen):
148 def _xfail(*args, **kwargs):
149 if not experimental_codegen:
150 return
151 request.node.add_marker(pytest.mark.xfail(*args, strict=True, **kwargs))
152
153 return _xfail
154
155
156@pytest.fixture
157def chdir_tmp_path(tmp_path):
158 # this is useful for when you want imports to have relpaths
159 with working_directory(tmp_path):
160 yield
161
162
163# CMC 2024-03-01 this doesn't need to be a fixture
164@pytest.fixture
165def keccak():
166 return keccak256
167
168
169@pytest.fixture
170def make_file(tmp_path):
171 # writes file_contents to file_name, creating it in the
172 # tmp_path directory. returns final path.
173 def fn(file_name, file_contents):
174 path = tmp_path / file_name
175 path.parent.mkdir(parents=True, exist_ok=True)
176 with path.open("w") as f:
177 f.write(file_contents)
178
179 return path
180
181 return fn
182
183
184# this can either be used for its side effects (to prepare a call
185# to get_contract), or the result can be provided directly to
186# compile_code / CompilerData.
187@pytest.fixture
188def make_input_bundle(tmp_path, make_file):
189 def fn(sources_dict):
190 for file_name, file_contents in sources_dict.items():
191 make_file(file_name, file_contents)
192 return FilesystemInputBundle([tmp_path])
193
194 return fn
195
196
197# for tests which just need an input bundle, doesn't matter what it is
198@pytest.fixture
199def dummy_input_bundle():
200 return InputBundle([])
201
202
203# TODO: remove me, this is just string.encode("utf-8").ljust()
204# only used in test_logging.py.
205@pytest.fixture
206def bytes_helper():
207 def bytes_helper(str, length):
208 return bytes(str, "utf-8") + bytearray(length - len(str))
209
210 return bytes_helper
211
212
213def _none_addr(datatype, data):
214 if datatype == "address" and int(data, base=16) == 0:
215 return (datatype, None)
216 else:
217 return (datatype, data)
218
219
220CONCISE_NORMALIZERS = (_none_addr,)
221
222
223@pytest.fixture(scope="module")
224def tester():
225 # set absurdly high gas limit so that london basefee never adjusts
226 # (note: 2**63 - 1 is max that evm allows)
227 custom_genesis = PyEVMBackend._generate_genesis_params(overrides={"gas_limit": 10**10})
228 custom_genesis["base_fee_per_gas"] = 0
229 backend = PyEVMBackend(genesis_parameters=custom_genesis)
230 return EthereumTester(backend=backend)
231
232
233def zero_gas_price_strategy(web3, transaction_params=None):
234 return 0 # zero gas price makes testing simpler.
235
236
237@pytest.fixture(scope="module")
238def w3(tester):
239 w3 = Web3(EthereumTesterProvider(tester))
240 w3.eth.set_gas_price_strategy(zero_gas_price_strategy)
241 return w3
242
243
244def get_compiler_gas_estimate(code, func):
245 sigs = compiler.phases.CompilerData(code).function_signatures
246 if func:
247 return compiler.utils.build_gas_estimates(sigs)[func] + 22000
248 else:
249 return sum(compiler.utils.build_gas_estimates(sigs).values()) + 22000
250
251
252def check_gas_on_chain(w3, tester, code, func=None, res=None):
253 gas_estimate = get_compiler_gas_estimate(code, func)
254 gas_actual = tester.get_block_by_number("latest")["gas_used"]
255 # Computed upper bound on the gas consumption should
256 # be greater than or equal to the amount of gas used
257 if gas_estimate < gas_actual:
258 raise Exception(f"Gas upper bound fail: bound {gas_estimate} actual {gas_actual}")
259
260 print(f"Function name: {func} - Gas estimate {gas_estimate}, Actual: {gas_actual}")
261
262
263def gas_estimation_decorator(w3, tester, fn, source_code, func):
264 def decorator(*args, **kwargs):
265 @wraps(fn)
266 def decorated_function(*args, **kwargs):
267 result = fn(*args, **kwargs)
268 if "transact" in kwargs:
269 check_gas_on_chain(w3, tester, source_code, func, res=result)
270 return result
271
272 return decorated_function(*args, **kwargs)
273
274 return decorator
275
276
277def set_decorator_to_contract_function(w3, tester, contract, source_code, func):
278 func_definition = getattr(contract, func)
279 func_with_decorator = gas_estimation_decorator(w3, tester, func_definition, source_code, func)
280 setattr(contract, func, func_with_decorator)
281
282
283class VyperMethod:
284 ALLOWED_MODIFIERS = {"call", "estimateGas", "transact", "buildTransaction"}
285
286 def __init__(self, function, normalizers=None):
287 self._function = function
288 self._function._return_data_normalizers = normalizers
289
290 def __call__(self, *args, **kwargs):
291 return self.__prepared_function(*args, **kwargs)
292
293 def __prepared_function(self, *args, **kwargs):
294 if not kwargs:
295 modifier, modifier_dict = "call", {}
296 fn_abi = [
297 x
298 for x in self._function.contract_abi
299 if x.get("name") == self._function.function_identifier
300].pop()
301 # To make tests faster just supply some high gas value.
302 modifier_dict.update({"gas": fn_abi.get("gas", 0) + 500000})
303 elif len(kwargs) == 1:
304 modifier, modifier_dict = kwargs.popitem()
305 if modifier not in self.ALLOWED_MODIFIERS:
306 raise TypeError(f"The only allowed keyword arguments are: {self.ALLOWED_MODIFIERS}")
307 else:
308 raise TypeError(f"Use up to one keyword argument, one of: {self.ALLOWED_MODIFIERS}")
309 return getattr(self._function(*args), modifier)(modifier_dict)
310
311
312class VyperContract:
313 """
314 An alternative Contract Factory which invokes all methods as `call()`,
315 unless you add a keyword argument. The keyword argument assigns the prep method.
316 This call
317 > contract.withdraw(amount, transact={'from': eth.accounts[1], 'gas': 100000, ...})
318 is equivalent to this call in the classic contract:
319 > contract.functions.withdraw(amount).transact({'from': eth.accounts[1], 'gas': 100000, ...})
320 """
321
322 def __init__(self, classic_contract, method_class=VyperMethod):
323 classic_contract._return_data_normalizers += CONCISE_NORMALIZERS
324 self._classic_contract = classic_contract
325 self.address = self._classic_contract.address
326 protected_fn_names = [fn for fn in dir(self) if not fn.endswith("__")]
327
328 try:
329 fn_names = [fn["name"] for fn in self._classic_contract.functions._functions]
330 except web3.exceptions.NoABIFunctionsFound:
331 fn_names = []
332
333 for fn_name in fn_names:
334 # Override namespace collisions
335 if fn_name in protected_fn_names:
336 raise AttributeError(f"{fn_name} is protected!")
337 else:
338 _classic_method = getattr(self._classic_contract.functions, fn_name)
339 _concise_method = method_class(
340 _classic_method, self._classic_contract._return_data_normalizers
341)
342 setattr(self, fn_name, _concise_method)
343
344 @classmethod
345 def factory(cls, *args, **kwargs):
346 return compose(cls, Contract.factory(*args, **kwargs))
347
348
349@pytest.fixture
350def get_contract_from_ir(w3, optimize):
351 def ir_compiler(ir, *args, **kwargs):
352 ir = IRnode.from_list(ir)
353 if optimize != OptimizationLevel.NONE:
354 ir = optimizer.optimize(ir)
355
356 bytecode, _ = compile_ir.assembly_to_evm(
357 compile_ir.compile_to_assembly(ir, optimize=optimize)
358)
359
360 abi = kwargs.get("abi") or []
361 c = w3.eth.contract(abi=abi, bytecode=bytecode)
362 deploy_transaction = c.constructor()
363 tx_hash = deploy_transaction.transact()
364 address = w3.eth.get_transaction_receipt(tx_hash)["contractAddress"]
365 contract = w3.eth.contract(
366 address, abi=abi, bytecode=bytecode, ContractFactoryClass=VyperContract
367)
368 return contract
369
370 return ir_compiler
371
372
373def _get_contract(
374 w3,
375 source_code,
376 optimize,
377 experimental_codegen,
378 output_formats,
379 *args,
380 override_opt_level=None,
381 input_bundle=None,
382 **kwargs,
383):
384 settings = get_global_settings()
385 settings.optimize = override_opt_level or optimize
386 settings.experimental_codegen = experimental_codegen
387 out = compiler.compile_code(
388 source_code,
389 # test that all output formats can get generated
390 output_formats=output_formats,
391 settings=settings,
392 input_bundle=input_bundle,
393 show_gas_estimates=True, # Enable gas estimates for testing
394)
395 parse_vyper_source(source_code) # Test grammar.
396 json.dumps(out["metadata"]) # test metadata is json serializable
397 abi = out["abi"]
398 bytecode = out["bytecode"]
399 value = kwargs.pop("value_in_eth", 0) * 10**18 # Handle deploying with an eth value.
400 c = w3.eth.contract(abi=abi, bytecode=bytecode)
401 deploy_transaction = c.constructor(*args)
402 tx_info = {"from": w3.eth.accounts[0], "value": value, "gasPrice": 0}
403 tx_info.update(kwargs)
404 tx_hash = deploy_transaction.transact(tx_info)
405 address = w3.eth.get_transaction_receipt(tx_hash)["contractAddress"]
406 return w3.eth.contract(address, abi=abi, bytecode=bytecode, ContractFactoryClass=VyperContract)
407
408
409@pytest.fixture(scope="module")
410def get_contract(w3, optimize, experimental_codegen, output_formats):
411 def fn(source_code, *args, **kwargs):
412 return _get_contract(
413 w3, source_code, optimize, experimental_codegen, output_formats, *args, **kwargs
414)
415
416 return fn
417
418
419@pytest.fixture
420def get_contract_with_gas_estimation(tester, w3, optimize, experimental_codegen, output_formats):
421 def get_contract_with_gas_estimation(source_code, *args, **kwargs):
422 contract = _get_contract(
423 w3, source_code, optimize, experimental_codegen, output_formats, *args, **kwargs
424)
425 for abi_ in contract._classic_contract.functions.abi:
426 if abi_["type"] == "function":
427 set_decorator_to_contract_function(w3, tester, contract, source_code, abi_["name"])
428 return contract
429
430 return get_contract_with_gas_estimation
431
432
433@pytest.fixture
434def get_contract_with_gas_estimation_for_constants(
435 w3, optimize, experimental_codegen, output_formats
436):
437 def get_contract_with_gas_estimation_for_constants(source_code, *args, **kwargs):
438 return _get_contract(
439 w3, source_code, optimize, experimental_codegen, output_formats, *args, **kwargs
440)
441
442 return get_contract_with_gas_estimation_for_constants
443
444
445@pytest.fixture(scope="module")
446def get_contract_module(optimize, experimental_codegen, output_formats):
447 """
448 This fixture is used for Hypothesis tests to ensure that
449 the same contract is called over multiple runs of the test.
450 """
451 custom_genesis = PyEVMBackend._generate_genesis_params(overrides={"gas_limit": 4500000})
452 custom_genesis["base_fee_per_gas"] = 0
453 backend = PyEVMBackend(genesis_parameters=custom_genesis)
454 tester = EthereumTester(backend=backend)
455 w3 = Web3(EthereumTesterProvider(tester))
456 w3.eth.set_gas_price_strategy(zero_gas_price_strategy)
457
458 def get_contract_module(source_code, *args, **kwargs):
459 return _get_contract(
460 w3, source_code, optimize, experimental_codegen, output_formats, *args, **kwargs
461)
462
463 return get_contract_module
464
465
466def _deploy_blueprint_for(
467 w3,
468 source_code,
469 optimize,
470 experimental_codegen,
471 output_formats,
472 initcode_prefix=ERC5202_PREFIX,
473 **kwargs,
474):
475 settings = Settings()
476 settings.optimize = optimize
477 settings.experimental_codegen = experimental_codegen
478 out = compiler.compile_code(
479 source_code,
480 output_formats=output_formats,
481 settings=settings,
482 show_gas_estimates=True, # Enable gas estimates for testing
483)
484 parse_vyper_source(source_code) # Test grammar.
485 abi = out["abi"]
486 bytecode = HexBytes(initcode_prefix) + HexBytes(out["bytecode"])
487 bytecode_len = len(bytecode)
488 bytecode_len_hex = hex(bytecode_len)[2:].rjust(4, "0")
489 # prepend a quick deploy preamble
490 deploy_preamble = HexBytes("61" + bytecode_len_hex + "3d81600a3d39f3")
491 deploy_bytecode = HexBytes(deploy_preamble) + bytecode
492
493 deployer_abi = [] # just a constructor
494 c = w3.eth.contract(abi=deployer_abi, bytecode=deploy_bytecode)
495 deploy_transaction = c.constructor()
496 tx_info = {"from": w3.eth.accounts[0], "value": 0, "gasPrice": 0}
497
498 tx_hash = deploy_transaction.transact(tx_info)
499 address = w3.eth.get_transaction_receipt(tx_hash)["contractAddress"]
500
501 # sanity check
502 assert w3.eth.get_code(address) == bytecode, (w3.eth.get_code(address), bytecode)
503
504 def factory(address):
505 return w3.eth.contract(
506 address, abi=abi, bytecode=bytecode, ContractFactoryClass=VyperContract
507)
508
509 return w3.eth.contract(address, bytecode=deploy_bytecode), factory
510
511
512@pytest.fixture(scope="module")
513def deploy_blueprint_for(w3, optimize, experimental_codegen, output_formats):
514 def deploy_blueprint_for(source_code, *args, **kwargs):
515 return _deploy_blueprint_for(
516 w3, source_code, optimize, experimental_codegen, output_formats, *args, **kwargs
517)
518
519 return deploy_blueprint_for
520
521
522# TODO: this should not be a fixture.
523# remove me and replace all uses with `with pytest.raises`.
524@pytest.fixture
525def assert_compile_failed():
526 def assert_compile_failed(function_to_test, exception=Exception):
527 with pytest.raises(exception):
528 function_to_test()
529
530 return assert_compile_failed
531
532
533@pytest.fixture
534def create2_address_of(keccak):
535 def _f(_addr, _salt, _initcode):
536 prefix = HexBytes("0xff")
537 addr = HexBytes(_addr)
538 salt = HexBytes(_salt)
539 initcode = HexBytes(_initcode)
540 return keccak(prefix + addr + salt + keccak(initcode))[12:]
541
542 return _f
543
544
545@pytest.fixture
546def side_effects_contract(get_contract):
547 def generate(ret_type):
548 """
549 Generates a Vyper contract with an external `foo()` function, which
550 returns the specified return value of the specified return type, for
551 testing side effects using the `assert_side_effects_invoked` fixture.
552 """
553 code = f"""
554counter: public(uint256)
555
556@external
557def foo(s: {ret_type}) -> {ret_type}:
558 self.counter += 1
559 return s
560 """
561 contract = get_contract(code)
562 return contract
563
564 return generate
565
566
567@pytest.fixture
568def assert_side_effects_invoked():
569 def assert_side_effects_invoked(side_effects_contract, side_effects_trigger, n=1):
570 start_value = side_effects_contract.counter()
571
572 side_effects_trigger()
573
574 end_value = side_effects_contract.counter()
575 assert end_value == start_value + n
576
577 return assert_side_effects_invoked
578
579
580@pytest.fixture
581def get_logs(w3):
582 def get_logs(tx_hash, c, event_name):
583 tx_receipt = w3.eth.get_transaction_receipt(tx_hash)
584 return c._classic_contract.events[event_name]().process_receipt(tx_receipt)
585
586 return get_logs
587
588
589@pytest.fixture(scope="module")
590def tx_failed(tester):
591 @contextmanager
592 def fn(exception=TransactionFailed, exc_text=None):
593 snapshot_id = tester.take_snapshot()
594 with pytest.raises(exception) as excinfo:
595 yield excinfo
596 tester.revert_to_snapshot(snapshot_id)
597 if exc_text:
598 # TODO test equality
599 assert exc_text in str(excinfo.value), (exc_text, excinfo.value)
600
601 return fn
602
603
604def pytest_runtest_call(item):
605 marker = item.get_closest_marker("requires_evm_version")
606 if marker:
607 assert len(marker.args) == 1
608 version = marker.args[0]
609 if not version_check(begin=version):
610 item.add_marker(
611 pytest.mark.xfail(reason="Wrong EVM version", raises=EvmVersionException)
612)

The final two fixtures are optional and will be discussed later. The rest of this chapter assumes that you have this code set up in your conftest.py file.

Alternatively, you can import the fixtures to conftest.py or use pytest plugins [https://docs.pytest.org/en/latest/plugins.html].

Writing a Basic Test

Assume the following simple contract storage.vy. It has a single integer variable and a function to set that value.

storage.vy

 1#pragma version >0.3.10
 2
 3storedData: public(int128)
 4
 5@deploy
 6def __init__(_x: int128):
 7 self.storedData = _x
 8
 9@external
10def set(_x: int128):
11 self.storedData = _x

We create a test file test_storage.py where we write our tests in pytest style.

test_storage.py

 1import pytest
 2
 3INITIAL_VALUE = 4
 4
 5
 6@pytest.fixture
 7def storage_contract(w3, get_contract):
 8 with open("examples/storage/storage.vy") as f:
 9 contract_code = f.read()
10 # Pass constructor variables directly to the contract
11 contract = get_contract(contract_code, INITIAL_VALUE)
12 return contract
13
14
15def test_initial_state(storage_contract):
16 # Check if the constructor of the contract is set up properly
17 assert storage_contract.storedData() == INITIAL_VALUE
18
19
20def test_set(w3, storage_contract):
21 k0 = w3.eth.accounts[0]
22
23 # Let k0 try to set the value to 10
24 storage_contract.set(10, transact={"from": k0})
25 assert storage_contract.storedData() == 10 # Directly access storedData
26
27 # Let k0 try to set the value to -5
28 storage_contract.set(-5, transact={"from": k0})
29 assert storage_contract.storedData() == -5

First we create a fixture for the contract which will compile our contract and set up a Web3 contract object. We then use this fixture for our test functions to interact with the contract.

Note

To run the tests, call pytest or python -m pytest from your project directory.

Events and Failed Transactions

To test events and failed transactions we expand our simple storage contract to include an event and two conditions for a failed transaction: advanced_storage.vy

advanced_storage.vy

 1#pragma version >0.3.10
 2
 3event DataChange:
 4 setter: indexed(address)
 5 value: int128
 6
 7storedData: public(int128)
 8
 9@deploy
10def __init__(_x: int128):
11 self.storedData = _x
12
13@external
14def set(_x: int128):
15 assert _x >= 0, "No negative values"
16 assert self.storedData < 100, "Storage is locked when 100 or more is stored"
17 self.storedData = _x
18 log DataChange(msg.sender, _x)
19
20@external
21def reset():
22 self.storedData = 0

Next, we take a look at the two fixtures that will allow us to read the event logs and to check for failed transactions.

conftest.py

@pytest.fixture(scope="module")
def tx_failed(tester):
 @contextmanager
 def fn(exception=TransactionFailed, exc_text=None):
 snapshot_id = tester.take_snapshot()
 with pytest.raises(exception) as excinfo:
 yield excinfo
 tester.revert_to_snapshot(snapshot_id)
 if exc_text:
 # TODO test equality
 assert exc_text in str(excinfo.value), (exc_text, excinfo.value)

 return fn

The fixture to assert failed transactions defaults to check for a TransactionFailed exception, but can be used to check for different exceptions too, as shown below. Also note that the chain gets reverted to the state before the failed transaction.

conftest.py

@pytest.fixture
def get_logs(w3):
 def get_logs(tx_hash, c, event_name):
 tx_receipt = w3.eth.get_transaction_receipt(tx_hash)
 return c._classic_contract.events[event_name]().process_receipt(tx_receipt)

 return get_logs

This fixture will return a tuple with all the logs for a certain event and transaction. The length of the tuple equals the number of events (of the specified type) logged and should be checked first.

Finally, we create a new file test_advanced_storage.py where we use the new fixtures to test failed transactions and events.

test_advanced_storage.py

 1import pytest
 2from web3.exceptions import ValidationError
 3
 4INITIAL_VALUE = 4
 5
 6
 7@pytest.fixture
 8def adv_storage_contract(w3, get_contract):
 9 with open("examples/storage/advanced_storage.vy") as f:
10 contract_code = f.read()
11 # Pass constructor variables directly to the contract
12 contract = get_contract(contract_code, INITIAL_VALUE)
13 return contract
14
15
16def test_initial_state(adv_storage_contract):
17 # Check if the constructor of the contract is set up properly
18 assert adv_storage_contract.storedData() == INITIAL_VALUE
19
20
21def test_failed_transactions(w3, adv_storage_contract, tx_failed):
22 k1 = w3.eth.accounts[1]
23
24 # Try to set the storage to a negative amount
25 with tx_failed():
26 adv_storage_contract.set(-10, transact={"from": k1})
27
28 # Lock the contract by storing more than 100. Then try to change the value
29 adv_storage_contract.set(150, transact={"from": k1})
30 with tx_failed():
31 adv_storage_contract.set(10, transact={"from": k1})
32
33 # Reset the contract and try to change the value
34 adv_storage_contract.reset(transact={"from": k1})
35 adv_storage_contract.set(10, transact={"from": k1})
36 assert adv_storage_contract.storedData() == 10
37
38 # Assert a different exception (ValidationError for non-matching argument type)
39 with tx_failed(ValidationError):
40 adv_storage_contract.set("foo", transact={"from": k1})
41
42 # Assert a different exception that contains specific text
43 with tx_failed(ValidationError, "invocation failed due to improper number of arguments"):
44 adv_storage_contract.set(1, 2, transact={"from": k1})
45
46
47def test_events(w3, adv_storage_contract, get_logs):
48 k1, k2 = w3.eth.accounts[:2]
49
50 tx1 = adv_storage_contract.set(10, transact={"from": k1})
51 tx2 = adv_storage_contract.set(20, transact={"from": k2})
52 tx3 = adv_storage_contract.reset(transact={"from": k1})
53
54 # Save DataChange logs from all three transactions
55 logs1 = get_logs(tx1, adv_storage_contract, "DataChange")
56 logs2 = get_logs(tx2, adv_storage_contract, "DataChange")
57 logs3 = get_logs(tx3, adv_storage_contract, "DataChange")
58
59 # Check log contents
60 assert len(logs1) == 1
61 assert logs1[0].args.value == 10
62
63 assert len(logs2) == 1
64 assert logs2[0].args.setter == k2
65
66 assert not logs3 # tx3 does not generate a log

Other resources and learning material

Vyper has an active community. You can find third-party tutorials, examples, courses, and other learning material.

General

	Ape Academy – Learn how to build Vyper projects [https://academy.apeworx.io/] by ApeWorX

	More Vyper by Example [https://vyper-by-example.org/] by Smart Contract Engineer

	Vyper cheat Sheet [https://reference.auditless.com/cheatsheet]

	Vyper Hub for development [https://github.com/zcor/vyper-dev]

	Vyper greatest hits smart contract examples [https://github.com/pynchmeister/vyper-greatest-hits/tree/main/contracts]

	A curated list of Vyper resources, libraries, tools, and more [https://github.com/stars/pcaversaccio/lists/vyper]

Frameworks and tooling

	Titanoboa – An experimental Vyper interpreter with pretty tracebacks, forking, debugging features and more [https://github.com/vyperlang/titanoboa/]

	ApeWorX – The Ethereum development framework for Python Developers, Data Scientists, and Security Professionals [https://www.apeworx.io/]

	VyperDeployer – A helper smart contract to compile and test Vyper contracts in Foundry [https://github.com/pcaversaccio/snekmate/blob/main/lib/utils/VyperDeployer.sol]

	🐍 snekmate – Vyper smart contract building blocks [https://github.com/pcaversaccio/snekmate]

	Serpentor – A set of smart contracts tools for governance [https://github.com/yearn/serpentor]

	Smart contract development frameworks and tools for Vyper on Ethereum.org [https://ethereum.org/en/developers/docs/programming-languages/python/]

	Vyper Online Compiler - an online platform for compiling and deploying Vyper smart contracts [https://github.com/0x0077/vyper-online-compiler]

Security

	VyperPunk – learn to secure and hack Vyper smart contracts [https://github.com/SupremacyTeam/VyperPunk]

	VyperExamples – Vyper vulnerability examples [https://www.vyperexamples.com/reentrancy]

Conference presentations

	Vyper Smart Contract Programming Language by Patrick Collins (2022, 30 mins) [https://www.youtube.com/watch?v=b-sOMNF9quo&t=1444s]

	Python and DeFi by Curve Finance (2022, 15 mins) [https://www.youtube.com/watch?v=4HOU3z0LoDg]

	My experience with Vyper over the years by Benjamin Scherrey (2022, 15 mins) [https://www.youtube.com/watch?v=_j7qF_GlyWE]

	Short introduction to Vyper by Edison Que (3 mins) [https://www.youtube.com/watch?v=dXqln-keyHw&t=4s]

Unmaintained

These resources have not been updated for a while, but may still offer interesting content.

	Awesome Vyper curated resources [https://github.com/spadebuilders/awesome-vyper]

	Brownie – Python framework for developing smart contracts (deprecated) [https://eth-brownie.readthedocs.io/en/stable/]

	Foundry x Vyper – Foundry template to compile Vyper contracts [https://github.com/0xKitsune/Foundry-Vyper]

Release Notes

v0.4.0b1 (“Nagini”)

Date released: TBD

v0.4.0 represents a major overhaul to the Vyper language. Notably, it overhauls the import system and adds support for code reuse. It also adds a new, experimental backend to Vyper which lays the foundation for improved analysis, optimization and integration with third party tools.

v0.3.10 (“Black Adder”)

Date released: 2023-10-04

v0.3.10 is a performance focused release that additionally ships numerous bugfixes. It adds a codesize optimization mode (#3493 [https://github.com/vyperlang/vyper/pull/3493]), adds new vyper-specific #pragma directives (#3493 [https://github.com/vyperlang/vyper/pull/3493]), uses Cancun’s MCOPY opcode for some compiler generated code (#3483 [https://github.com/vyperlang/vyper/pull/3483]), and generates selector tables which now feature O(1) performance (#3496 [https://github.com/vyperlang/vyper/pull/3496]).

Breaking changes:

	add runtime code layout to initcode (#3584 [https://github.com/vyperlang/vyper/pull/3584])

	drop evm versions through istanbul (#3470 [https://github.com/vyperlang/vyper/pull/3470])

	remove vyper signature from runtime (#3471 [https://github.com/vyperlang/vyper/pull/3471])

	only allow valid identifiers to be nonreentrant keys (#3605 [https://github.com/vyperlang/vyper/pull/3605])

Non-breaking changes and improvements:

	O(1) selector tables (#3496 [https://github.com/vyperlang/vyper/pull/3496])

	implement bound= in ranges (#3537 [https://github.com/vyperlang/vyper/pull/3537], #3551 [https://github.com/vyperlang/vyper/pull/3551])

	add optimization mode to vyper compiler (#3493 [https://github.com/vyperlang/vyper/pull/3493])

	improve batch copy performance (#3483 [https://github.com/vyperlang/vyper/pull/3483], #3499 [https://github.com/vyperlang/vyper/pull/3499], #3525 [https://github.com/vyperlang/vyper/pull/3525])

Notable fixes:

	fix ecrecover() behavior when signature is invalid (GHSA-f5x6-7qgp-jhf3 [https://github.com/vyperlang/vyper/security/advisories/GHSA-f5x6-7qgp-jhf3], #3586 [https://github.com/vyperlang/vyper/pull/3586])

	fix: order of evaluation for some builtins (#3583 [https://github.com/vyperlang/vyper/pull/3583], #3587 [https://github.com/vyperlang/vyper/pull/3587])

	fix: memory allocation in certain builtins using msize (#3610 [https://github.com/vyperlang/vyper/pull/3610])

	fix: _abi_decode() input validation in certain complex expressions (#3626 [https://github.com/vyperlang/vyper/pull/3626])

	fix: pycryptodome for arm builds (#3485 [https://github.com/vyperlang/vyper/pull/3485])

	let params of internal functions be mutable (#3473 [https://github.com/vyperlang/vyper/pull/3473])

	typechecking of folded builtins in (#3490 [https://github.com/vyperlang/vyper/pull/3490])

	update tload/tstore opcodes per latest 1153 EIP spec (#3484 [https://github.com/vyperlang/vyper/pull/3484])

	fix: raw_call type when max_outsize=0 is set (#3572 [https://github.com/vyperlang/vyper/pull/3572])

	fix: implements check for indexed event arguments (#3570 [https://github.com/vyperlang/vyper/pull/3570])

	fix: type-checking for _abi_decode() arguments (#3626 [https://github.com/vyperlang/vyper/pull/3623])

Other docs updates, chores and fixes:

	relax restrictions on internal function signatures (#3573 [https://github.com/vyperlang/vyper/pull/3573])

	note on security advisory in release notes for versions 0.2.15, 0.2.16, and 0.3.0 (#3553 [https://github.com/vyperlang/vyper/pull/3553])

	fix: yanked version in release notes (#3545 [https://github.com/vyperlang/vyper/pull/3545])

	update release notes on yanked versions (#3547 [https://github.com/vyperlang/vyper/pull/3547])

	improve error message for conflicting methods IDs (#3491 [https://github.com/vyperlang/vyper/pull/3491])

	document epsilon builtin (#3552 [https://github.com/vyperlang/vyper/pull/3552])

	relax version pragma parsing (#3511 [https://github.com/vyperlang/vyper/pull/3511])

	fix: issue with finding installed packages in editable mode (#3510 [https://github.com/vyperlang/vyper/pull/3510])

	add note on security advisory for ecrecover in docs (#3539 [https://github.com/vyperlang/vyper/pull/3539])

	add asm option to cli help (#3585 [https://github.com/vyperlang/vyper/pull/3585])

	add message to error map for repeat range check (#3542 [https://github.com/vyperlang/vyper/pull/3542])

	fix: public constant arrays (#3536 [https://github.com/vyperlang/vyper/pull/3536])

v0.3.9 (“Common Adder”)

Date released: 2023-05-29

This is a patch release fix for v0.3.8. @bout3fiddy discovered a codesize regression for blueprint contracts in v0.3.8 which is fixed in this release. @bout3fiddy also discovered a runtime performance (gas) regression for default functions in v0.3.8 which is fixed in this release.

Fixes:

	initcode codesize blowup (#3450 [https://github.com/vyperlang/vyper/pull/3450])

	add back global calldatasize check for contracts with default fn (#3463 [https://github.com/vyperlang/vyper/pull/3463])

v0.3.8

Date released: 2023-05-23

Non-breaking changes and improvements:

	transient storage keyword (#3373 [https://github.com/vyperlang/vyper/pull/3373])

	ternary operators (#3398 [https://github.com/vyperlang/vyper/pull/3398])

	raw_revert() builtin (#3136 [https://github.com/vyperlang/vyper/pull/3136])

	shift operators (#3019 [https://github.com/vyperlang/vyper/pull/3019])

	make send() gas stipend configurable (#3158 [https://github.com/vyperlang/vyper/pull/3158])

	use new push0 opcode (#3361 [https://github.com/vyperlang/vyper/pull/3361])

	python 3.11 support (#3129 [https://github.com/vyperlang/vyper/pull/3129])

	drop support for python 3.8 and 3.9 (#3325 [https://github.com/vyperlang/vyper/pull/3325])

	build for aarch64 (#2687 [https://github.com/vyperlang/vyper/pull/2687])

Note that with the addition of push0 opcode, shanghai is now the default compilation target for vyper. When deploying to a chain which does not support shanghai, it is recommended to set --evm-version to paris, otherwise it could result in hard-to-debug errors.

Major refactoring PRs:

	refactor front-end type system (#2974 [https://github.com/vyperlang/vyper/pull/2974])

	merge front-end and codegen type systems (#3182 [https://github.com/vyperlang/vyper/pull/3182])

	simplify GlobalContext (#3209 [https://github.com/vyperlang/vyper/pull/3209])

	remove FunctionSignature (#3390 [https://github.com/vyperlang/vyper/pull/3390])

Notable fixes:

	assignment when rhs is complex type and references lhs (#3410 [https://github.com/vyperlang/vyper/pull/3410])

	uninitialized immutable values (#3409 [https://github.com/vyperlang/vyper/pull/3409])

	success value when mixing max_outsize=0 and revert_on_failure=False (GHSA-w9g2-3w7p-72g9 [https://github.com/vyperlang/vyper/security/advisories/GHSA-w9g2-3w7p-72g9])

	block certain kinds of storage allocator overflows (GHSA-mgv8-gggw-mrg6 [https://github.com/vyperlang/vyper/security/advisories/GHSA-mgv8-gggw-mrg6])

	store-before-load when a dynarray appears on both sides of an assignment (GHSA-3p37-3636-q8wv [https://github.com/vyperlang/vyper/security/advisories/GHSA-3p37-3636-q8wv])

	bounds check for loops of the form for i in range(x, x+N) (GHSA-6r8q-pfpv-7cgj [https://github.com/vyperlang/vyper/security/advisories/GHSA-6r8q-pfpv-7cgj])

	alignment of call-site posargs and kwargs for internal functions (GHSA-ph9x-4vc9-m39g [https://github.com/vyperlang/vyper/security/advisories/GHSA-ph9x-4vc9-m39g])

	batch nonpayable check for default functions calldatasize < 4 (#3104 [https://github.com/vyperlang/vyper/pull/3104], #3408 [https://github.com/vyperlang/vyper/pull/3408], cf. GHSA-vxmm-cwh2-q762 [https://github.com/vyperlang/vyper/security/advisories/GHSA-vxmm-cwh2-q762])

Other docs updates, chores and fixes:

	call graph stability (#3370 [https://github.com/vyperlang/vyper/pull/3370])

	fix vyper-serve output (#3338 [https://github.com/vyperlang/vyper/pull/3338])

	add custom: natspec tags (#3403 [https://github.com/vyperlang/vyper/pull/3403])

	add missing pc maps to vyper_json output (#3333 [https://github.com/vyperlang/vyper/pull/3333])

	fix constructor context for internal functions (#3388 [https://github.com/vyperlang/vyper/pull/3388])

	add deprecation warning for selfdestruct usage (#3372 [https://github.com/vyperlang/vyper/pull/3372])

	add bytecode metadata option to vyper-json (#3117 [https://github.com/vyperlang/vyper/pull/3117])

	fix compiler panic when a break is outside of a loop (#3177 [https://github.com/vyperlang/vyper/pull/3177])

	fix complex arguments to builtin functions (#3167 [https://github.com/vyperlang/vyper/pull/3167])

	add support for all types in ABI imports (#3154 [https://github.com/vyperlang/vyper/pull/3154])

	disable uadd operator (#3174 [https://github.com/vyperlang/vyper/pull/3174])

	block bitwise ops on decimals (#3219 [https://github.com/vyperlang/vyper/pull/3219])

	raise UNREACHABLE (#3194 [https://github.com/vyperlang/vyper/pull/3194])

	allow enum as mapping key (#3256 [https://github.com/vyperlang/vyper/pull/3256])

	block boolean not operator on numeric types (#3231 [https://github.com/vyperlang/vyper/pull/3231])

	enforce that loop’s iterators are valid names (#3242 [https://github.com/vyperlang/vyper/pull/3242])

	fix typechecker hotspot (#3318 [https://github.com/vyperlang/vyper/pull/3318])

	rewrite typechecker journal to handle nested commits (#3375 [https://github.com/vyperlang/vyper/pull/3375])

	fix missing pc map for empty functions (#3202 [https://github.com/vyperlang/vyper/pull/3202])

	guard against iterating over empty list in for loop (#3197 [https://github.com/vyperlang/vyper/pull/3197])

	skip enum members during constant folding (#3235 [https://github.com/vyperlang/vyper/pull/3235])

	bitwise not constant folding (#3222 [https://github.com/vyperlang/vyper/pull/3222])

	allow accessing members of constant address (#3261 [https://github.com/vyperlang/vyper/pull/3261])

	guard against decorators in interface (#3266 [https://github.com/vyperlang/vyper/pull/3266])

	fix bounds for decimals in some builtins (#3283 [https://github.com/vyperlang/vyper/pull/3283])

	length of literal empty bytestrings (#3276 [https://github.com/vyperlang/vyper/pull/3276])

	block empty() for HashMaps (#3303 [https://github.com/vyperlang/vyper/pull/3303])

	fix type inference for empty lists (#3377 [https://github.com/vyperlang/vyper/pull/3377])

	disallow logging from pure, view functions (#3424 [https://github.com/vyperlang/vyper/pull/3424])

	improve optimizer rules for comparison operators (#3412 [https://github.com/vyperlang/vyper/pull/3412])

	deploy to ghcr on push (#3435 [https://github.com/vyperlang/vyper/pull/3435])

	add note on return value bounds in interfaces (#3205 [https://github.com/vyperlang/vyper/pull/3205])

	index id param in URI event of ERC1155ownable (#3203 [https://github.com/vyperlang/vyper/pull/3203])

	add missing asset function to ERC4626 built-in interface (#3295 [https://github.com/vyperlang/vyper/pull/3295])

	clarify skip_contract_check=True can result in undefined behavior (#3386 [https://github.com/vyperlang/vyper/pull/3386])

	add custom NatSpec tag to docs (#3404 [https://github.com/vyperlang/vyper/pull/3404])

	fix uint256_addmod doc (#3300 [https://github.com/vyperlang/vyper/pull/3300])

	document optional kwargs for external calls (#3122 [https://github.com/vyperlang/vyper/pull/3122])

	remove slice() length documentation caveats (#3152 [https://github.com/vyperlang/vyper/pull/3152])

	fix docs of blockhash to reflect revert behaviour (#3168 [https://github.com/vyperlang/vyper/pull/3168])

	improvements to compiler error messages (#3121 [https://github.com/vyperlang/vyper/pull/3121], #3134 [https://github.com/vyperlang/vyper/pull/3134], #3312 [https://github.com/vyperlang/vyper/pull/3312], #3304 [https://github.com/vyperlang/vyper/pull/3304], #3240 [https://github.com/vyperlang/vyper/pull/3240], #3264 [https://github.com/vyperlang/vyper/pull/3264], #3343 [https://github.com/vyperlang/vyper/pull/3343], #3307 [https://github.com/vyperlang/vyper/pull/3307], #3313 [https://github.com/vyperlang/vyper/pull/3313] and #3215 [https://github.com/vyperlang/vyper/pull/3215])

These are really just the highlights, as many other bugfixes, docs updates and refactoring (over 150 pull requests!) made it into this release! For the full list, please see the changelog [https://github.com/vyperlang/vyper/compare/v0.3.7...v0.3.8]. Special thanks to contributions from @tserg, @trocher, @z80dev, @emc415 and @benber86 in this release!

New Contributors:

	@omahs made their first contribution in (#3128 [https://github.com/vyperlang/vyper/pull/3128])

	@ObiajuluM made their first contribution in (#3124 [https://github.com/vyperlang/vyper/pull/3124])

	@trocher made their first contribution in (#3134 [https://github.com/vyperlang/vyper/pull/3134])

	@ozmium22 made their first contribution in (#3149 [https://github.com/vyperlang/vyper/pull/3149])

	@ToonVanHove made their first contribution in (#3168 [https://github.com/vyperlang/vyper/pull/3168])

	@emc415 made their first contribution in (#3158 [https://github.com/vyperlang/vyper/pull/3158])

	@lgtm-com made their first contribution in (#3147 [https://github.com/vyperlang/vyper/pull/3147])

	@tdurieux made their first contribution in (#3224 [https://github.com/vyperlang/vyper/pull/3224])

	@victor-ego made their first contribution in (#3263 [https://github.com/vyperlang/vyper/pull/3263])

	@miohtama made their first contribution in (#3257 [https://github.com/vyperlang/vyper/pull/3257])

	@kelvinfan001 made their first contribution in (#2687 [https://github.com/vyperlang/vyper/pull/2687])

v0.3.7

Date released: 2022-09-26

Breaking changes:

	chore: drop python 3.7 support (#3071 [https://github.com/vyperlang/vyper/pull/3071])

	fix: relax check for statically sized calldata (#3090 [https://github.com/vyperlang/vyper/pull/3090])

Non-breaking changes and improvements:

	fix: assert description in Crowdfund.finalize() (#3058 [https://github.com/vyperlang/vyper/pull/3058])

	fix: change mutability of example ERC721 interface (#3076 [https://github.com/vyperlang/vyper/pull/3076])

	chore: improve error message for non-checksummed address literal (#3065 [https://github.com/vyperlang/vyper/pull/3065])

	feat: isqrt() builtin (#3074 [https://github.com/vyperlang/vyper/pull/3074]) (#3069 [https://github.com/vyperlang/vyper/pull/3069])

	feat: add block.prevrandao as alias for block.difficulty (#3085 [https://github.com/vyperlang/vyper/pull/3085])

	feat: epsilon() builtin (#3057 [https://github.com/vyperlang/vyper/pull/3057])

	feat: extend ecrecover signature to accept additional parameter types (#3084 [https://github.com/vyperlang/vyper/pull/3084])

	feat: allow constant and immutable variables to be declared public (#3024 [https://github.com/vyperlang/vyper/pull/3024])

	feat: optionally disable metadata in bytecode (#3107 [https://github.com/vyperlang/vyper/pull/3107])

Bugfixes:

	fix: empty nested dynamic arrays (#3061 [https://github.com/vyperlang/vyper/pull/3061])

	fix: foldable builtin default args in imports (#3079 [https://github.com/vyperlang/vyper/pull/3079]) (#3077 [https://github.com/vyperlang/vyper/pull/3077])

Additional changes and improvements:

	doc: update broken links in SECURITY.md (#3095 [https://github.com/vyperlang/vyper/pull/3095])

	chore: update discord link in docs (#3031 [https://github.com/vyperlang/vyper/pull/3031])

	fix: broken links in various READMEs (#3072 [https://github.com/vyperlang/vyper/pull/3072])

	chore: fix compile warnings in examples (#3033 [https://github.com/vyperlang/vyper/pull/3033])

	feat: append lineno to the filename in error messages (#3092 [https://github.com/vyperlang/vyper/pull/3092])

	chore: migrate lark grammar (#3082 [https://github.com/vyperlang/vyper/pull/3082])

	chore: loosen and upgrade semantic version (#3106 [https://github.com/vyperlang/vyper/pull/3106])

New Contributors

	@emilianobonassi made their first contribution in #3107 [https://github.com/vyperlang/vyper/pull/3107]

	@unparalleled-js made their first contribution in #3106 [https://github.com/vyperlang/vyper/pull/3106]

	@pcaversaccio made their first contribution in #3085 [https://github.com/vyperlang/vyper/pull/3085]

	@nfwsncked made their first contribution in #3058 [https://github.com/vyperlang/vyper/pull/3058]

	@z80 made their first contribution in #3057 [https://github.com/vyperlang/vyper/pull/3057]

	@Benny made their first contribution in #3024 [https://github.com/vyperlang/vyper/pull/3024]

	@cairo made their first contribution in #3072 [https://github.com/vyperlang/vyper/pull/3072]

	@fiddy made their first contribution in #3069 [https://github.com/vyperlang/vyper/pull/3069]

Special thanks to returning contributors @tserg, @pandadefi, and @delaaxe.

v0.3.6

Date released: 2022-08-07

Bugfixes:

	Fix in expressions when list members are variables (#3035 [https://github.com/vyperlang/vyper/pull/3035])

v0.3.5

THIS RELEASE HAS BEEN PULLED

Date released: 2022-08-05

Non-breaking changes and improvements:

	Add blueprint deployer output format (#3001 [https://github.com/vyperlang/vyper/pull/3001])

	Allow arbitrary data to be passed to create_from_blueprint (#2996 [https://github.com/vyperlang/vyper/pull/2996])

	Add CBOR length to bytecode for decoders (#3010 [https://github.com/vyperlang/vyper/pull/3010])

	Fix compiler panic when accessing enum storage vars via self (#2998 [https://github.com/vyperlang/vyper/pull/2998])

	Fix: allow empty() in constant definitions and in default argument position (#3008 [https://github.com/vyperlang/vyper/pull/3008])

	Fix: disallow self address in pure functions (#3027 [https://github.com/vyperlang/vyper/pull/3027])

v0.3.4

Date released: 2022-07-27

Non-breaking changes and improvements:

	Add enum types (#2874 [https://github.com/vyperlang/vyper/pull/2874], #2915 [https://github.com/vyperlang/vyper/pull/2915], #2925 [https://github.com/vyperlang/vyper/pull/2925], #2977 [https://github.com/vyperlang/vyper/pull/2977])

	Add _abi_decode builtin (#2882 [https://github.com/vyperlang/vyper/pull/2882])

	Add create_from_blueprint and create_copy_of builtins (#2895 [https://github.com/vyperlang/vyper/pull/2895])

	Add default_return_value kwarg for calls (#2839 [https://github.com/vyperlang/vyper/pull/2839])

	Add min_value and max_value builtins for numeric types (#2935 [https://github.com/vyperlang/vyper/pull/2935])

	Add uint2str builtin (#2879 [https://github.com/vyperlang/vyper/pull/2879])

	Add vyper signature to bytecode (#2860 [https://github.com/vyperlang/vyper/pull/2860])

Other fixes and improvements:

	Call internal functions from constructor (#2496 [https://github.com/vyperlang/vyper/pull/2496])

	Arithmetic for new int types (#2843 [https://github.com/vyperlang/vyper/pull/2843])

	Allow msg.data in raw_call without slice (#2902 [https://github.com/vyperlang/vyper/pull/2902])

	Per-method calldatasize checks (#2911 [https://github.com/vyperlang/vyper/pull/2911])

	Type inference and annotation of arguments for builtin functions (#2817 [https://github.com/vyperlang/vyper/pull/2817])

	Allow varargs for print (#2833 [https://github.com/vyperlang/vyper/pull/2833])

	Add error_map output format for tooling consumption (#2939 [https://github.com/vyperlang/vyper/pull/2939])

	Multiple evaluation of contract address in call (GHSA-4v9q-cgpw-cf38 [https://github.com/vyperlang/vyper/security/advisories/GHSA-4v9q-cgpw-cf38])

	Improve ast output (#2824 [https://github.com/vyperlang/vyper/pull/2824])

	Allow @nonreentrant on view functions (#2921 [https://github.com/vyperlang/vyper/pull/2921])

	Add shift() support for signed integers (#2964 [https://github.com/vyperlang/vyper/pull/2964])

	Enable dynarrays of strings (#2922 [https://github.com/vyperlang/vyper/pull/2922])

	Fix off-by-one bounds check in certain safepow cases (#2983 [https://github.com/vyperlang/vyper/pull/2983])

	Optimizer improvements (#2647 [https://github.com/vyperlang/vyper/pull/2647], #2868 [https://github.com/vyperlang/vyper/pull/2868], #2914 [https://github.com/vyperlang/vyper/pull/2914], #2843 [https://github.com/vyperlang/vyper/pull/2843], #2944 [https://github.com/vyperlang/vyper/pull/2944])

	Reverse order in which exceptions are reported (#2838 [https://github.com/vyperlang/vyper/pull/2838])

	Fix compile-time blowup for large contracts (#2981 [https://github.com/vyperlang/vyper/pull/2981])

	Rename vyper-ir binary to fang (#2936 [https://github.com/vyperlang/vyper/pull/2936])

Many other small bugfixes, optimizations and refactoring also made it into this release! Special thanks to @tserg and @pandadefi for contributing several important bugfixes, refactoring and features to this release!

v0.3.3

Date released: 2022-04-22

This is a bugfix release. It patches an off-by-one error in the storage allocation mechanism for dynamic arrays reported by @haltman-at in #2820 [https://github.com/vyperlang/vyper/issues/2820]

Other fixes and improvements:

	Add a print built-in which allows printing debugging messages in hardhat. (#2818 [https://github.com/vyperlang/vyper/pull/2818])

	Fix various error messages (#2798 [https://github.com/vyperlang/vyper/pull/2798], #2805 [https://github.com/vyperlang/vyper/pull/2805])

v0.3.2

Date released: 2022-04-17

Breaking changes:

	Increase the bounds of the decimal type (#2730 [https://github.com/vyperlang/vyper/pull/2730])

	Generalize and simplify the semantics of the convert builtin (#2694 [https://github.com/vyperlang/vyper/pull/2694])

	Restrict hex and bytes literals (#2736 [https://github.com/vyperlang/vyper/pull/2736], #2872 [https://github.com/vyperlang/vyper/pull/2782])

Non-breaking changes and improvements:

	Implement dynamic arrays (#2556 [https://github.com/vyperlang/vyper/pull/2556], #2606 [https://github.com/vyperlang/vyper/pull/2606], #2615 [https://github.com/vyperlang/vyper/pull/2615])

	Support all ABIv2 integer and bytes types (#2705 [https://github.com/vyperlang/vyper/pull/2705])

	Add storage layout override mechanism (#2593 [https://github.com/vyperlang/vyper/pull/2593])

	Support <address>.code attribute (#2583 [https://github.com/vyperlang/vyper/pull/2583])

	Add tx.gasprice builtin (#2624 [https://github.com/vyperlang/vyper/pull/2624])

	Allow structs as constant variables (#2617 [https://github.com/vyperlang/vyper/pull/2617])

	Implement skip_contract_check kwarg (#2551 [https://github.com/vyperlang/vyper/pull/2551])

	Support EIP-2678 ethPM manifest files (#2628 [https://github.com/vyperlang/vyper/pull/2628])

	Add metadata output format (#2597 [https://github.com/vyperlang/vyper/pull/2597])

	Allow msg.* variables in internal functions (#2632 [https://github.com/vyperlang/vyper/pull/2632])

	Add unsafe_ arithmetic builtins (#2629 [https://github.com/vyperlang/vyper/pull/2629])

	Add subroutines to Vyper IR (#2598 [https://github.com/vyperlang/vyper/pull/2598])

	Add select opcode to Vyper IR (#2690 [https://github.com/vyperlang/vyper/pull/2690])

	Allow lists of any type as loop variables (#2616 [https://github.com/vyperlang/vyper/pull/2616])

	Improve suggestions in error messages (#2806 [https://github.com/vyperlang/vyper/pull/2806])

Notable Fixes:

	Clamping of returndata from external calls in complex expressions (GHSA-4mrx-6fxm-8jpg [https://github.com/vyperlang/vyper/security/advisories/GHSA-4mrx-6fxm-8jpg], GHSA-j2x6-9323-fp7h [https://github.com/vyperlang/vyper/security/advisories/GHSA-j2x6-9323-fp7h])

	Bytestring equality for (N<=32) (GHSA-7vrm-3jc8-5wwm [https://github.com/vyperlang/vyper/security/advisories/GHSA-7vrm-3jc8-5wwm])

	Typechecking of constant variables (#2580 [https://github.com/vyperlang/vyper/pull/2580], #2603 [https://github.com/vyperlang/vyper/pull/2603])

	Referencing immutables in constructor (#2627 [https://github.com/vyperlang/vyper/pull/2627])

	Arrays of interfaces in for loops (#2699 [https://github.com/vyperlang/vyper/pull/2699])

Lots of optimizations, refactoring and other fixes made it into this release! For the full list, please see the changelog [https://github.com/vyperlang/vyper/compare/v0.3.1...v0.3.2].

Special thanks to @tserg for typechecker fixes and significant testing of new features! Additional contributors to this release include @abdullathedruid, @hi-ogawa, @skellet0r, @fubuloubu, @onlymaresia, @SwapOperator, @hitsuzen-eth, @Sud0u53r, @davidhq.

v0.3.1

Date released: 2021-12-01

Breaking changes:

	Disallow changes to decimal precision when used as a library (#2479 [https://github.com/vyperlang/vyper/pull/2479])

Non-breaking changes and improvements:

	Add immutable variables (#2466 [https://github.com/vyperlang/vyper/pull/2466])

	Add uint8 type (#2477 [https://github.com/vyperlang/vyper/pull/2477])

	Add gaslimit and basefee env variables (#2495 [https://github.com/vyperlang/vyper/pull/2495])

	Enable checkable raw_call (#2482 [https://github.com/vyperlang/vyper/pull/2482])

	Propagate revert data when external call fails (#2531 [https://github.com/vyperlang/vyper/pull/2531])

	Improve LLL annotations (#2486 [https://github.com/vyperlang/vyper/pull/2486])

	Optimize short-circuiting boolean operations (#2467 [https://github.com/vyperlang/vyper/pull/2467], #2493 [https://github.com/vyperlang/vyper/pull/2493])

	Optimize identity precompile usage (#2488 [https://github.com/vyperlang/vyper/pull/2488])

	Remove loaded limits for int128 and address (#2506 [https://github.com/vyperlang/vyper/pull/2506])

	Add machine readable ir_json format (#2510 [https://github.com/vyperlang/vyper/pull/2510])

	Optimize raw_call for the common case when the input is in memory (#2481 [https://github.com/vyperlang/vyper/pull/2481])

	Remove experimental OVM transpiler (#2532 [https://github.com/vyperlang/vyper/pull/2532])

	Add CLI flag to disable optimizer (#2522 [https://github.com/vyperlang/vyper/pull/2522])

	Add docs for LLL syntax and semantics (#2494 [https://github.com/vyperlang/vyper/pull/2494])

Fixes:

	Allow non-constant revert reason strings (#2509 [https://github.com/vyperlang/vyper/pull/2509])

	Allow slices of complex expressions (#2500 [https://github.com/vyperlang/vyper/pull/2500])

	Remove seq_unchecked from LLL codegen (#2485 [https://github.com/vyperlang/vyper/pull/2485])

	Fix external calls with default parameters (#2526 [https://github.com/vyperlang/vyper/pull/2526])

	Enable lists of structs as function arguments (#2515 [https://github.com/vyperlang/vyper/pull/2515])

	Fix .balance on constant addresses (#2533 [https://github.com/vyperlang/vyper/pull/2533])

	Allow variable indexing into constant/literal arrays (#2534 [https://github.com/vyperlang/vyper/pull/2534])

	Fix allocation of unused storage slots (#2439 [https://github.com/vyperlang/vyper/pull/2439], #2514 [https://github.com/vyperlang/vyper/pull/2514])

Special thanks to @skellet0r for some major features in this release!

v0.3.0

⚠️ A critical security vulnerability has been discovered in this version and we strongly recommend using version 0.3.1 [https://github.com/vyperlang/vyper/releases/tag/v0.3.1] or higher. For more information, please see the Security Advisory GHSA-5824-cm3x-3c38 [https://github.com/vyperlang/vyper/security/advisories/GHSA-5824-cm3x-3c38].

Date released: 2021-10-04

Breaking changes:

	Change ABI encoding of single-struct return values to be compatible with Solidity (#2457 [https://github.com/vyperlang/vyper/pull/2457])

	Drop Python 3.6 support (#2462 [https://github.com/vyperlang/vyper/pull/2462])

Non-breaking changes and improvements:

	Rewrite internal calling convention (#2447 [https://github.com/vyperlang/vyper/pull/2447])

	Allow any ABI-encodable type as function arguments and return types (#2154 [https://github.com/vyperlang/vyper/issues/2154], #2190 [https://github.com/vyperlang/vyper/issues/2190])

	Add support for deterministic deployment of minimal proxies using CREATE2 (#2460 [https://github.com/vyperlang/vyper/pull/2460])

	Optimize code for certain copies (#2468 [https://github.com/vyperlang/vyper/pull/2468])

	Add -o CLI flag to redirect output to a file (#2452 [https://github.com/vyperlang/vyper/pull/2452])

	Other docs updates (#2450 [https://github.com/vyperlang/vyper/pull/2450])

Fixes:

	_abi_encode builtin evaluates arguments multiple times (#2459 [https://github.com/vyperlang/vyper/issues/2459])

	ABI length is too short for nested tuples (#2458 [https://github.com/vyperlang/vyper/issues/2458])

	Returndata is not clamped for certain numeric types (#2454 [https://github.com/vyperlang/vyper/issues/2454])

	__default__ functions do not respect nonreentrancy keys (#2455 [https://github.com/vyperlang/vyper/issues/2455])

	Clamps for bytestrings in initcode are broken (#2456 [https://github.com/vyperlang/vyper/issues/2456])

	Missing clamps for decimal args in external functions (GHSA-c7pr-343r-5c46 [https://github.com/vyperlang/vyper/security/advisories/GHSA-c7pr-343r-5c46])

	Memory corruption when returning a literal struct with a private function call inside of it (GHSA-xv8x-pr4h-73jv [https://github.com/vyperlang/vyper/security/advisories/GHSA-xv8x-pr4h-73jv])

Special thanks to contributions from @skellet0r and @benjyz for this release!

v0.2.16

⚠️ A critical security vulnerability has been discovered in this version and we strongly recommend using version 0.3.1 [https://github.com/vyperlang/vyper/releases/tag/v0.3.1] or higher. For more information, please see the Security Advisory GHSA-5824-cm3x-3c38 [https://github.com/vyperlang/vyper/security/advisories/GHSA-5824-cm3x-3c38].

Date released: 2021-08-27

Non-breaking changes and improvements:

	Expose _abi_encode as a user-facing builtin (#2401 [https://github.com/vyperlang/vyper/pull/2401])

	Export the storage layout as a compiler output option (#2433 [https://github.com/vyperlang/vyper/pull/2433])

	Add experimental OVM backend (#2416 [https://github.com/vyperlang/vyper/pull/2416])

	Allow any ABI-encodable type as event arguments (#2403 [https://github.com/vyperlang/vyper/pull/2403])

	Optimize int128 clamping (#2411 [https://github.com/vyperlang/vyper/pull/2411])

	Other docs updates (#2405 [https://github.com/vyperlang/vyper/pull/2405], #2422 [https://github.com/vyperlang/vyper/pull/2422], #2425 [https://github.com/vyperlang/vyper/pull/2425])

Fixes:

	Disallow nonreentrant decorator on constructors (#2426 [https://github.com/vyperlang/vyper/pull/2426])

	Fix bounds checks when handling msg.data (#2419 [https://github.com/vyperlang/vyper/pull/2419])

	Allow interfaces in lists, structs and maps (#2397 [https://github.com/vyperlang/vyper/pull/2397])

	Fix trailing newline parse bug (#2412 [https://github.com/vyperlang/vyper/pull/2412])

Special thanks to contributions from @skellet0r, @sambacha and @milancermak for this release!

v0.2.15

⚠️ A critical security vulnerability has been discovered in this version and we strongly recommend using version 0.3.1 [https://github.com/vyperlang/vyper/releases/tag/v0.3.1] or higher. For more information, please see the Security Advisory GHSA-5824-cm3x-3c38 [https://github.com/vyperlang/vyper/security/advisories/GHSA-5824-cm3x-3c38].

Date released: 23-07-2021

Non-breaking changes and improvements
- Optimization when returning nested tuples (#2392 [https://github.com/vyperlang/vyper/pull/2392])

Fixes:
- Annotated kwargs for builtins (#2389 [https://github.com/vyperlang/vyper/pull/2389])
- Storage slot allocation bug (#2391 [https://github.com/vyperlang/vyper/pull/2391])

v0.2.14

THIS RELEASE HAS BEEN PULLED

Date released: 20-07-2021

Non-breaking changes and improvements:
- Reduce bytecode by sharing code for clamps (#2387 [https://github.com/vyperlang/vyper/pull/2387])

Fixes:
- Storage corruption from re-entrancy locks (#2379 [https://github.com/vyperlang/vyper/pull/2379])

v0.2.13

THIS RELEASE HAS BEEN PULLED

Date released: 06-07-2021

Non-breaking changes and improvements:

	Add the abs builtin function (#2356 [https://github.com/vyperlang/vyper/pull/2356])

	Streamline the location of arrays within storage (#2361 [https://github.com/vyperlang/vyper/pull/2361])

v0.2.12

Date released: 16-04-2021

This release fixes a memory corruption bug (#2345 [https://github.com/vyperlang/vyper/pull/2345]) that was introduced in the v0.2.x series
and was not fixed in VVE-2020-0004 [https://github.com/vyperlang/vyper/security/advisories/GHSA-2r3x-4mrv-mcxf]. Read about it further in
VVE-2021-0001 [https://github.com/vyperlang/vyper/security/advisories/GHSA-22wc-c9wj-6q2v].

Non-breaking changes and improvements:

	Optimize calldataload (#2352 [https://github.com/vyperlang/vyper/pull/2352])

	Add the int256 signed integer type (#2351 [https://github.com/vyperlang/vyper/pull/2351])

	EIP2929 opcode repricing and Berlin support (#2350 [https://github.com/vyperlang/vyper/pull/2350])

	Add msg.data environment variable #2343 (#2343 [https://github.com/vyperlang/vyper/pull/2343])

	Full support for Python 3.9 (#2233 [https://github.com/vyperlang/vyper/pull/2233])

v0.2.11

Date released: 27-02-2021

This is a quick patch release to fix a memory corruption bug that was introduced in v0.2.9 (#2321 [https://github.com/vyperlang/vyper/pull/2321]) with excessive memory deallocation when releasing internal variables

v0.2.10

THIS RELEASE HAS BEEN PULLED

Date released: 17-02-2021

This is a quick patch release to fix incorrect generated ABIs that was introduced in v0.2.9 (#2311 [https://github.com/vyperlang/vyper/pull/2311]) where storage variable getters were incorrectly marked as nonpayable instead of view

v0.2.9

THIS RELEASE HAS BEEN PULLED

Date released: 16-02-2021

Non-breaking changes and improvements:
- Add license to wheel, Anaconda support (#2265 [https://github.com/vyperlang/vyper/pull/2265])
- Consider events during type-check with implements: (#2283 [https://github.com/vyperlang/vyper/pull/2283])
- Refactor ABI generation (#2284 [https://github.com/vyperlang/vyper/pull/2284])
- Remove redundant checks in parser/signatures (#2288 [https://github.com/vyperlang/vyper/pull/2288])
- Streamling ABI-encoding logic for tuple return types (#2302 [https://github.com/vyperlang/vyper/pull/2302])
- Optimize function ordering within bytecode (#2303 [https://github.com/vyperlang/vyper/pull/2303])
- Assembly-level optimizations (#2304 [https://github.com/vyperlang/vyper/pull/2304])
- Optimize nonpayable assertion (#2307 [https://github.com/vyperlang/vyper/pull/2307])
- Optimize re-entrancy locks (#2308 [https://github.com/vyperlang/vyper/pull/2308])

Fixes:
- Change forwarder proxy bytecode to ERC-1167 (#2281 [https://github.com/vyperlang/vyper/pull/2281])
- Reserved keywords check update (#2286 [https://github.com/vyperlang/vyper/pull/2286])
- Incorrect type-check error in literal lists (#2309 [https://github.com/vyperlang/vyper/pull/2309])

Tons of Refactoring work courtesy of (@iamdefinitelyahuman [https://github.com/iamdefinitelyahuman])!

v0.2.8

Date released: 04-12-2020

Non-breaking changes and improvements:

	AST updates to provide preliminary support for Python 3.9 (#2225 [https://github.com/vyperlang/vyper/pull/2225])

	Support for the not in comparator (#2232 [https://github.com/vyperlang/vyper/pull/2232])

	Lift restriction on calldata variables shadowing storage variables (#2226 [https://github.com/vyperlang/vyper/pull/2226])

	Optimize shift bytecode when 2nd arg is a literal (#2201 [https://github.com/vyperlang/vyper/pull/2201])

	Warn when EIP-170 size limit is exceeded (#2208 [https://github.com/vyperlang/vyper/pull/2208])

Fixes:

	Allow use of slice on a calldata bytes32 (#2227 [https://github.com/vyperlang/vyper/pull/2227])

	Explicitly disallow iteration of a list of structs (#2228 [https://github.com/vyperlang/vyper/pull/2228])

	Improved validation of address checksums (#2229 [https://github.com/vyperlang/vyper/pull/2229])

	Bytes are always represented as hex within the AST (#2231 [https://github.com/vyperlang/vyper/pull/2231])

	Allow empty as an argument within a function call (#2234 [https://github.com/vyperlang/vyper/pull/2234])

	Allow empty static-sized array as an argument within a log statement (#2235 [https://github.com/vyperlang/vyper/pull/2235])

	Compile-time issue with Bytes variables as a key in a mapping (#2239 [https://github.com/vyperlang/vyper/pull/2239])

v0.2.7

Date released: 10-14-2020

This is a quick patch release to fix a runtime error introduced in v0.2.6 (#2188 [https://github.com/vyperlang/vyper/pull/2188]) that could allow for memory corruption under certain conditions.

Non-breaking changes and improvements:

	Optimizations around assert and raise (#2198 [https://github.com/vyperlang/vyper/pull/2198])

	Simplified internal handling of memory variables (#2194 [https://github.com/vyperlang/vyper/pull/2194])

Fixes:

	Ensure internal variables are always placed sequentially within memory (#2196 [https://github.com/vyperlang/vyper/pull/2196])

	Bugfixes around memory de-allocation (#2197 [https://github.com/vyperlang/vyper/pull/2197])

v0.2.6

THIS RELEASE HAS BEEN PULLED

Date released: 10-10-2020

Non-breaking changes and improvements:

	Release and reuse memory slots within the same function (#2188 [https://github.com/vyperlang/vyper/pull/2188])

	Allow implicit use of uint256 as iterator type in range-based for loops (#2180 [https://github.com/vyperlang/vyper/pull/2180])

	Optimize clamping logic for int128 (#2179 [https://github.com/vyperlang/vyper/pull/2179])

	Calculate array index offsets at compile time where possible (#2187 [https://github.com/vyperlang/vyper/pull/2187])

	Improved exception for invalid use of dynamically sized struct (#2189 [https://github.com/vyperlang/vyper/pull/2189])

	Improved exception for incorrect arg count in function call (#2178 [https://github.com/vyperlang/vyper/pull/2178])

	Improved exception for invalid subscript (#2177 [https://github.com/vyperlang/vyper/pull/2177])

Fixes:

	Memory corruption issue when performing function calls inside a tuple or another function call (#2186 [https://github.com/vyperlang/vyper/pull/2186])

	Incorrect function output when using multidimensional arrays (#2184 [https://github.com/vyperlang/vyper/pull/2184])

	Reduced ambiguity between address and Bytes[20] (#2191 [https://github.com/vyperlang/vyper/pull/2191])

v0.2.5

Date released: 30-09-2020

Non-breaking changes and improvements:

	Improve exception on incorrect interface (#2131 [https://github.com/vyperlang/vyper/pull/2131])

	Standalone binary preparation (#2134 [https://github.com/vyperlang/vyper/pull/2134])

	Improve make freeze (#2135 [https://github.com/vyperlang/vyper/pull/2135])

	Remove Excessive Scoping Rules on Local Variables (#2166 [https://github.com/vyperlang/vyper/pull/2166])

	Optimize nonpayable check for contracts that do not accept ETH (#2172 [https://github.com/vyperlang/vyper/pull/2172])

	Optimize safemath on division-by-zero with a literal divisor (#2173 [https://github.com/vyperlang/vyper/pull/2173])

	Optimize multiple sequential memory-zeroings (#2174 [https://github.com/vyperlang/vyper/pull/2174])

	Optimize size-limit checks for address and bool types (#2175 [https://github.com/vyperlang/vyper/pull/2175])

Fixes:

	Constant folding on lhs of assignments (#2137 [https://github.com/vyperlang/vyper/pull/2137])

	ABI issue with bytes and string arrays inside tuples (#2140 [https://github.com/vyperlang/vyper/pull/2140])

	Returning struct from a external function gives error (#2143 [https://github.com/vyperlang/vyper/pull/2143])

	Error messages with struct display all members (#2160 [https://github.com/vyperlang/vyper/pull/2160])

	The returned struct value from the external call doesn’t get stored properly (#2164 [https://github.com/vyperlang/vyper/pull/2164])

	Improved exception on invalid function-scoped assignment (#2176 [https://github.com/vyperlang/vyper/pull/2176])

v0.2.4

Date released: 03-08-2020

Non-breaking changes and improvements:

	Improve EOF Exceptions (#2115 [https://github.com/vyperlang/vyper/pull/2115])

	Improve exception messaging for type mismatches (#2119 [https://github.com/vyperlang/vyper/pull/2119])

	Ignore trailing newline tokens (#2120 [https://github.com/vyperlang/vyper/pull/2120])

Fixes:

	Fix ABI translations for structs that are returned from functions (#2114 [https://github.com/vyperlang/vyper/pull/2114])

	Raise when items that are not types are called (#2118 [https://github.com/vyperlang/vyper/pull/2118])

	Ensure hex and decimal AST nodes are serializable (#2123 [https://github.com/vyperlang/vyper/pull/2123])

v0.2.3

Date released: 16-07-2020

Non-breaking changes and improvements:

	Show contract names in raised exceptions (#2103 [https://github.com/vyperlang/vyper/pull/2103])

	Adjust function offsets to not include decorators (#2102 [https://github.com/vyperlang/vyper/pull/2102])

	Raise certain exception types immediately during module-scoped type checking (#2101 [https://github.com/vyperlang/vyper/pull/2101])

Fixes:

	Pop for loop values from stack prior to returning (#2110 [https://github.com/vyperlang/vyper/pull/2110])

	Type checking non-literal array index values (#2108 [https://github.com/vyperlang/vyper/pull/2108])

	Meaningful output during for loop type checking (#2096 [https://github.com/vyperlang/vyper/pull/2096])

v0.2.2

Date released: 04-07-2020

Fixes:

	Do not fold exponentiation to a negative power (#2089 [https://github.com/vyperlang/vyper/pull/2089])

	Add repr for mappings (#2090 [https://github.com/vyperlang/vyper/pull/2090])

	Literals are only validated once (#2093 [https://github.com/vyperlang/vyper/pull/2093])

v0.2.1

Date released: 03-07-2020

This is a major breaking release of the Vyper compiler and language. It is also the first release following our versioning scheme (#1887 [https://github.com/vyperlang/vyper/issues/1887]).

Breaking changes:

	@public and @private function decorators have been renamed to @external and @internal (VIP #2065 [https://github.com/vyperlang/vyper/issues/2065])

	The @constant decorator has been renamed to @view (VIP #2040 [https://github.com/vyperlang/vyper/issues/2040])

	Type units have been removed (VIP #1881 [https://github.com/vyperlang/vyper/issues/1881])

	Event declaration syntax now resembles that of struct declarations (VIP #1864 [https://github.com/vyperlang/vyper/issues/1864])

	log is now a statement (VIP #1864 [https://github.com/vyperlang/vyper/issues/1864])

	Mapping declaration syntax changed to HashMap[key_type, value_type] (VIP #1969 [https://github.com/vyperlang/vyper/issues/1969])

	Interfaces are now declared via the interface keyword instead of contract (VIP #1825 [https://github.com/vyperlang/vyper/issues/1825])

	bytes and string types are now written as Bytes and String (#2080 [https://github.com/vyperlang/vyper/pull/2080])

	bytes and string literals must now be bytes or regular strings, respectively. They are no longer interchangeable. (VIP #1876 [https://github.com/vyperlang/vyper/issues/1876])

	assert_modifiable has been removed, you can now directly perform assertions on calls (#2050 [https://github.com/vyperlang/vyper/pull/2050])

	value is no longer an allowable variable name in a function input (VIP #1877 [https://github.com/vyperlang/vyper/issues/1877])

	The slice builtin function expects uint256 for the start and length args (VIP #1986 [https://github.com/vyperlang/vyper/issues/1986])

	len return type is now uint256 (VIP #1979 [https://github.com/vyperlang/vyper/issues/1979])

	value and gas kwargs for external function calls must be given as uint256 (VIP #1878 [https://github.com/vyperlang/vyper/issues/1878])

	The outsize kwarg in raw_call has been renamed to max_outsize (#1977 [https://github.com/vyperlang/vyper/pull/1977])

	The type kwarg in extract32 has been renamed to output_type (#2036 [https://github.com/vyperlang/vyper/pull/2036])

	Public array getters now use uint256 for their input argument(s) (VIP #1983 [https://github.com/vyperlang/vyper/issues/1983])

	Public struct getters now return all values of a struct (#2064 [https://github.com/vyperlang/vyper/pull/2064])

	RLPList has been removed (VIP #1866 [https://github.com/vyperlang/vyper/issues/1866])

The following non-breaking VIPs and features were implemented:

	Implement boolean condition short circuiting (VIP #1817 [https://github.com/vyperlang/vyper/issues/1817])

	Add the empty builtin function for zero-ing a value (#1676 [https://github.com/vyperlang/vyper/pull/1676])

	Refactor of the compiler process resulting in an almost 5x performance boost! (#1962 [https://github.com/vyperlang/vyper/pull/1962])

	Support ABI State Mutability Fields in Interface Definitions (VIP #2042 [https://github.com/vyperlang/vyper/issues/2042])

	Support @pure decorator (VIP #2041 [https://github.com/vyperlang/vyper/issues/2041])

	Overflow checks for exponentiation (#2072 [https://github.com/vyperlang/vyper/pull/2072])

	Validate return data length via RETURNDATASIZE (#2076 [https://github.com/vyperlang/vyper/pull/2076])

	Improved constant folding (#1949 [https://github.com/vyperlang/vyper/pull/1949])

	Allow raise without reason string (VIP #1902 [https://github.com/vyperlang/vyper/issues/1902])

	Make the type argument in method_id optional (VIP #1980 [https://github.com/vyperlang/vyper/issues/1980])

	Hash complex types when used as indexed values in an event (#2060 [https://github.com/vyperlang/vyper/pull/2060])

	Ease restrictions on calls to self (#2059 [https://github.com/vyperlang/vyper/pull/2059])

	Remove ordering restrictions in module-scope of contract (#2057 [https://github.com/vyperlang/vyper/pull/2057])

	raw_call can now be used to perform a STATICCALL (#1973 [https://github.com/vyperlang/vyper/pull/1973])

	Optimize precompiles to use STATICCALL (#1930 [https://github.com/vyperlang/vyper/pull/1930])

Some of the bug and stability fixes:

	Arg clamping issue when using multidimensional arrays (#2071 [https://github.com/vyperlang/vyper/pull/2071])

	Support calldata arrays with the in comparator (#2070 [https://github.com/vyperlang/vyper/pull/2070])

	Prevent modification of a storage array during iteration via for loop (#2028 [https://github.com/vyperlang/vyper/pull/2028])

	Fix memory length of revert string (#1982 [https://github.com/vyperlang/vyper/pull/1982])

	Memory offset issue when returning tuples from private functions (#1968 [https://github.com/vyperlang/vyper/pull/1968])

	Issue with arrays as default function arguments (#2077 [https://github.com/vyperlang/vyper/pull/2077])

	Private function calls no longer generate a call signature (#2058 [https://github.com/vyperlang/vyper/pull/2058])

Significant codebase refactor, thanks to (@iamdefinitelyahuman [https://github.com/iamdefinitelyahuman])!

NOTE: v0.2.0 was not used due to a conflict in PyPI with a previous release. Both tags v0.2.0 and v0.2.1 are identical.

v0.1.0-beta.17

Date released: 24-03-2020

The following VIPs and features were implemented for Beta 17:

	raw_call and slice argument updates (VIP #1879 [https://github.com/vyperlang/vyper/issues/1879])

	NatSpec support (#1898 [https://github.com/vyperlang/vyper/pull/1898])

Some of the bug and stability fixes:

	ABI interface fixes (#1842 [https://github.com/vyperlang/vyper/pull/1842])

	Modifications to how ABI data types are represented (#1846 [https://github.com/vyperlang/vyper/pull/1846])

	Generate method identifier for struct return type (#1843 [https://github.com/vyperlang/vyper/pull/1843])

	Return tuple with fixed array fails to compile (#1838 [https://github.com/vyperlang/vyper/pull/1838])

	Also lots of refactoring and doc updates!

This release will be the last to follow our current release process.
All future releases will be governed by the versioning scheme (#1887 [https://github.com/vyperlang/vyper/issues/1887]).
The next release will be v0.2.0, and contain many breaking changes.

v0.1.0-beta.16

Date released: 09-01-2020

Beta 16 was a quick patch release to fix one issue: (#1829 [https://github.com/vyperlang/vyper/pull/1829])

v0.1.0-beta.15

Date released: 06-01-2020

NOTE: we changed our license to Apache 2.0 (#1772 [https://github.com/vyperlang/vyper/pull/1772])

The following VIPs were implemented for Beta 15:

	EVM Ruleset Switch (VIP #1230 [https://github.com/vyperlang/vyper/issues/1230])

	Add support for EIP-1344 [https://eips.ethereum.org/EIPS/eip-1344], Chain ID Opcode (VIP #1652 [https://github.com/vyperlang/vyper/issues/1652])

	Support for EIP-1052 [https://eips.ethereum.org/EIPS/eip-1052], EXTCODEHASH (VIP #1765 [https://github.com/vyperlang/vyper/issues/1765])

Some of the bug and stability fixes:

	Removed all traces of Javascript from the codebase (#1770 [https://github.com/vyperlang/vyper/pull/1770])

	Ensured sufficient gas stipend for precompiled calls (#1771 [https://github.com/vyperlang/vyper/pull/1771])

	Allow importing an interface that contains an implements statement (#1774 [https://github.com/vyperlang/vyper/pull/1774])

	Fixed how certain values compared when using min and max (#1790 [https://github.com/vyperlang/vyper/pull/1790])

	Removed unnecessary overflow checks on addmod and mulmod (#1786 [https://github.com/vyperlang/vyper/pull/1786])

	Check for state modification when using tuples (#1785 [https://github.com/vyperlang/vyper/pull/1785])

	Fix Windows path issue when importing interfaces (#1781 [https://github.com/vyperlang/vyper/pull/1781])

	Added Vyper grammar, currently used for fuzzing (#1768 [https://github.com/vyperlang/vyper/pull/1768])

	Modify modulus calculations for literals to be consistent with the EVM (#1792 [https://github.com/vyperlang/vyper/pull/1792])

	Explicitly disallow the use of exponentiation on decimal values (#1792 [https://github.com/vyperlang/vyper/pull/1792])

	Add compile-time checks for divide by zero and modulo by zero (#1792 [https://github.com/vyperlang/vyper/pull/1792])

	Fixed some issues with negating constants (#1791 [https://github.com/vyperlang/vyper/pull/1791])

	Allow relative imports beyond one parent level (#1784 [https://github.com/vyperlang/vyper/pull/1784])

	Implement SHL/SHR for bitshifting, using Constantinople rules (#1796 [https://github.com/vyperlang/vyper/pull/1796])

	vyper-json compatibility with solc settings (#1795 [https://github.com/vyperlang/vyper/pull/1795])

	Simplify the type check when returning lists (#1797 [https://github.com/vyperlang/vyper/pull/1797])

	Add branch coverage reporting (#1743 [https://github.com/vyperlang/vyper/pull/1743])

	Fix struct assignment order (#1728 [https://github.com/vyperlang/vyper/pull/1728])

	Added more words to reserved keyword list (#1741 [https://github.com/vyperlang/vyper/pull/1741])

	Allow scientific notation for literals (#1721 [https://github.com/vyperlang/vyper/pull/1721])

	Avoid overflow on sqrt of Decimal upper bound (#1679 [https://github.com/vyperlang/vyper/pull/1679])

	Refactor ABI encoder (#1723 [https://github.com/vyperlang/vyper/pull/1723])

	Changed opcode costs per EIP-1884 [https://eips.ethereum.org/EIPS/eip-1884] (#1764 [https://github.com/vyperlang/vyper/pull/1764])

Special thanks to (@iamdefinitelyahuman [https://github.com/iamdefinitelyahuman]) for lots of updates this release!

v0.1.0-beta.14

Date released: 13-11-2019

Some of the bug and stability fixes:

	Mucho Documentation and Example cleanup!

	Python 3.8 support (#1678 [https://github.com/vyperlang/vyper/pull/1678])

	Disallow scientific notation in literals, which previously parsed incorrectly (#1681 [https://github.com/vyperlang/vyper/pull/1681])

	Add implicit rewrite rule for bytes[32] -> bytes32 (#1718 [https://github.com/vyperlang/vyper/pull/1718])

	Support bytes32 in raw_log (#1719 [https://github.com/vyperlang/vyper/pull/1719])

	Fixed EOF parsing bug (#1720 [https://github.com/vyperlang/vyper/pull/1720])

	Cleaned up arithmetic expressions (#1661 [https://github.com/vyperlang/vyper/pull/1661])

	Fixed off-by-one in check for homogeneous list element types (#1673 [https://github.com/vyperlang/vyper/pull/1673])

	Fixed stack valency issues in if and for statements (#1665 [https://github.com/vyperlang/vyper/pull/1665])

	Prevent overflow when using sqrt on certain datatypes (#1679 [https://github.com/vyperlang/vyper/pull/1679])

	Prevent shadowing of internal variables (#1601 [https://github.com/vyperlang/vyper/pull/1601])

	Reject unary subtraction on unsigned types (#1638 [https://github.com/vyperlang/vyper/pull/1638])

	Disallow orelse syntax in for loops (#1633 [https://github.com/vyperlang/vyper/pull/1633])

	Increased clarity and efficiency of zero-padding (#1605 [https://github.com/vyperlang/vyper/pull/1605])

v0.1.0-beta.13

Date released: 27-09-2019

The following VIPs were implemented for Beta 13:

	Add vyper-json compilation mode (VIP #1520 [https://github.com/vyperlang/vyper/issues/1520])

	Environment variables and constants can now be used as default parameters (VIP #1525 [https://github.com/vyperlang/vyper/issues/1525])

	Require uninitialized memory be set on creation (VIP #1493 [https://github.com/vyperlang/vyper/issues/1493])

Some of the bug and stability fixes:

	Type check for default params and arrays (#1596 [https://github.com/vyperlang/vyper/pull/1596])

	Fixed bug when using assertions inside for loops (#1619 [https://github.com/vyperlang/vyper/pull/1619])

	Fixed zero padding error for ABI encoder (#1611 [https://github.com/vyperlang/vyper/pull/1611])

	Check calldatasize before calldataload for function selector (#1606 [https://github.com/vyperlang/vyper/pull/1606])

v0.1.0-beta.12

Date released: 27-08-2019

The following VIPs were implemented for Beta 12:

	Support for relative imports (VIP #1367 [https://github.com/vyperlang/vyper/issues/1367])

	Restricted use of environment variables in private functions (VIP #1199 [https://github.com/vyperlang/vyper/issues/1199])

Some of the bug and stability fixes:

	@nonreentrant/@constant logical inconsistency (#1544 [https://github.com/vyperlang/vyper/issues/1544])

	Struct passthrough issue (#1551 [https://github.com/vyperlang/vyper/issues/1551])

	Private underflow issue (#1470 [https://github.com/vyperlang/vyper/pull/1470])

	Constancy check issue (#1480 [https://github.com/vyperlang/vyper/pull/1480])

	Prevent use of conflicting method IDs (#1530 [https://github.com/vyperlang/vyper/pull/1530])

	Missing arg check for private functions (#1579 [https://github.com/vyperlang/vyper/pull/1579])

	Zero padding issue (#1563 [https://github.com/vyperlang/vyper/issues/1563])

	vyper.cli rearchitecture of scripts (#1574 [https://github.com/vyperlang/vyper/issues/1574])

	AST end offsets and Solidity-compatible compressed sourcemap (#1580 [https://github.com/vyperlang/vyper/pull/1580])

Special thanks to (@iamdefinitelyahuman [https://github.com/iamdefinitelyahuman]) for lots of updates this release!

v0.1.0-beta.11

Date released: 23-07-2019

Beta 11 brings some performance and stability fixes.

	Using calldata instead of memory parameters. (#1499 [https://github.com/vyperlang/vyper/pull/1499])

	Reducing of contract size, for large parameter functions. (#1486 [https://github.com/vyperlang/vyper/pull/1486])

	Improvements for Windows users (#1486 [https://github.com/vyperlang/vyper/pull/1486]) (#1488 [https://github.com/vyperlang/vyper/pull/1488])

	Array copy optimisation (#1487 [https://github.com/vyperlang/vyper/pull/1487])

	Fixing @nonreentrant decorator for return statements (#1532 [https://github.com/vyperlang/vyper/pull/1532])

	sha3 builtin function removed (#1328 [https://github.com/vyperlang/vyper/issues/1328])

	Disallow conflicting method IDs (#1530 [https://github.com/vyperlang/vyper/pull/1530])

	Additional convert() supported types (#1524 [https://github.com/vyperlang/vyper/pull/1524]) (#1500 [https://github.com/vyperlang/vyper/pull/1500])

	Equality operator for strings and bytes (#1507 [https://github.com/vyperlang/vyper/pull/1507])

	Change in compile_codes interface function (#1504 [https://github.com/vyperlang/vyper/pull/1504])

Thanks to all the contributors!

v0.1.0-beta.10

Date released: 24-05-2019

	Lots of linting and refactoring!

	Bugfix with regards to using arrays as parameters to private functions (#1418 [https://github.com/vyperlang/vyper/issues/1418]). Please check your contracts, and upgrade to latest version, if you do use this.

	Slight shrinking in init produced bytecode. (#1399 [https://github.com/vyperlang/vyper/issues/1399])

	Additional constancy protection in the for .. range expression. (#1397 [https://github.com/vyperlang/vyper/issues/1397])

	Improved bug report (#1394 [https://github.com/vyperlang/vyper/issues/1394])

	Fix returning of External Contract from functions (#1376 [https://github.com/vyperlang/vyper/issues/1376])

	Interface unit fix (#1303 [https://github.com/vyperlang/vyper/issues/1303])

	Not Equal (!=) optimisation (#1303 [https://github.com/vyperlang/vyper/issues/1303]) 1386

	New assert <condition>, UNREACHABLE statement. (#711 [https://github.com/vyperlang/vyper/issues/711])

Special thanks to (Charles Cooper [https://github.com/charles-cooper]), for some excellent contributions this release.

v0.1.0-beta.9

Date released: 12-03-2019

	Add support for list constants (#1211 [https://github.com/vyperlang/vyper/issues/1211])

	Add sha256 function (#1327 [https://github.com/vyperlang/vyper/issues/1327])

	Renamed create_with_code_of to create_forwarder_to (#1177 [https://github.com/vyperlang/vyper/issues/1177])

	@nonreentrant Decorator (#1204 [https://github.com/vyperlang/vyper/issues/1204])

	Add opcodes and opcodes_runtime flags to compiler (#1255 [https://github.com/vyperlang/vyper/pull/1255])

	Improved External contract call interfaces (#885 [https://github.com/vyperlang/vyper/issues/885])

Prior to v0.1.0-beta.9

Prior to this release, we managed our change log in a different fashion.
Here is the old changelog:

	2019.04.05: Add stricter checking of unbalanced return statements. (#590 [https://github.com/vyperlang/vyper/issues/590])

	2019.03.04: create_with_code_of has been renamed to create_forwarder_to. (#1177 [https://github.com/vyperlang/vyper/issues/1177])

	2019.02.14: Assigning a persistent contract address can only be done using the bar_contact = ERC20(<address>) syntax.

	2019.02.12: ERC20 interface has to be imported using from vyper.interfaces import ERC20 to use.

	2019.01.30: Byte array literals need to be annotated using b"", strings are represented as “”.

	2018.12.12: Disallow use of None, disallow use of del, implemented clear() built-in function.

	2018.11.19: Change mapping syntax to use map(). (VIP564 [https://github.com/vyperlang/vyper/issues/564])

	2018.10.02: Change the convert style to use types instead of string. (VIP1026 [https://github.com/vyperlang/vyper/issues/1026])

	2018.09.24: Add support for custom constants.

	2018.08.09: Add support for default parameters.

	2018.06.08: Tagged first beta.

	2018.05.23: Changed wei_value to be uint256.

	2018.04.03: Changed bytes declaration from bytes <= n to bytes[n].

	2018.03.27: Renaming signed256 to int256.

	2018.03.22: Add modifiable and static keywords for external contract calls.

	2018.03.20: Renaming __log__ to event.

	2018.02.22: Renaming num to int128, and num256 to uint256.

	2018.02.13: Ban functions with payable and constant decorators.

	2018.02.12: Division by num returns decimal type.

	2018.02.09: Standardize type conversions.

	2018.02.01: Functions cannot have the same name as globals.

	2018.01.27: Change getter from get_var to var.

	2018.01.11: Change version from 0.0.2 to 0.0.3

	2018.01.04: Types need to be specified on assignment (VIP545 [https://github.com/vyperlang/vyper/issues/545]).

	2017.01.02 Change as_wei_value to use quotes for units.

	2017.12.25: Change name from Viper to Vyper.

	2017.12.22: Add continue for loops

	2017.11.29: @internal renamed to @private.

	2017.11.15: Functions require either @internal or @public decorators.

	2017.07.25: The def foo() -> num(const): ... syntax no longer works; you now need to do def foo() -> num: ... with a @constant decorator on the previous line.

	2017.07.25: Functions without a @payable decorator now fail when called with nonzero wei.

	2017.07.25: A function can only call functions that are declared above it (that is, A can call B only if B appears earlier in the code than A does). This was introduced

Contributing

Help is always appreciated!

To get started, you can try installing Vyper in order to familiarize
yourself with the components of Vyper and the build process. Also, it may be
useful to become well-versed at writing smart-contracts in Vyper.

Types of Contributions

In particular, we need help in the following areas:

	Improving the documentation

	Responding to questions from other users on StackExchange [https://ethereum.stackexchange.com] and Discussions [https://github.com/vyperlang/vyper/discussions]

	Add to the discussions on the Vyper (Smart Contract Programming Language) Discord [https://discord.gg/6tw7PTM7C2]

	Suggesting Improvements

	Fixing and responding to Vyper’s GitHub issues [https://github.com/vyperlang/vyper/issues]

How to Suggest Improvements

To suggest an improvement, please create a Vyper Improvement Proposal (VIP for short)
using the VIP Template [https://github.com/vyperlang/vyper/blob/master/.github/ISSUE_TEMPLATE/vip.md].

How to Report Issues

To report an issue, please use the
GitHub issues tracker [https://github.com/vyperlang/vyper/issues]. When
reporting issues, please mention the following details:

	Which version of Vyper you are using

	What was the source code (if applicable)

	Which platform are you running on

	Your operating system name and version

	Detailed steps to reproduce the issue

	What was the result of the issue

	What the expected behaviour is

Reducing the source code that caused the issue to a bare minimum is always
very helpful and sometimes even clarifies a misunderstanding.

Fix Bugs

Find or report bugs at our issues page [https://github.com/vyperlang/vyper/issues]. Anything tagged with “bug” is open to whoever wants to implement it.

Style Guide

Our style guide outlines best practices for the Vyper repository. Please ask us on the Vyper (Smart Contract Programming Language) Discord [https://discord.gg/6tw7PTM7C2] #compiler-dev channel if you have questions about anything that is not outlined in the style guide.

Workflow for Pull Requests

In order to contribute, please fork off of the master branch and make your
changes there. Your commit messages should detail why you made your change
in addition to what you did (unless it is a tiny change).

If you need to pull in any changes from master after making your fork (for
example, to resolve potential merge conflicts), please avoid using git merge
and instead, git rebase your branch.

Implementing New Features

If you are writing a new feature, please ensure you write appropriate Pytest test cases and place them under tests/.

If you are making a larger change, please consult first with the Vyper (Smart Contract Programming Language) Discord [https://discord.gg/6tw7PTM7C2] #compiler-dev channel.

Although we do CI testing, please make sure that the tests pass for supported Python version and ensure that it builds locally before submitting a pull request.

Thank you for your help!

Style Guide

This document outlines the code style, project structure and practices followed by the Vyper development team.

Note

Portions of the current codebase do not adhere to this style guide. We are in the process of a large-scale refactor and this guide is intended to outline the structure and best practices during and beyond this refactor. Refactored code and added functionality must adhere to this guide. Bugfixes and modifications to existing functionality may adopt the same style as the related code.

Project Organization

	Each subdirectory within Vyper should be a self-contained package representing a single pass of the compiler or other logical component.

	Functionality intended to be called from modules outside of a package must be exposed within the base __init__.py. All other functionality is for internal use only.

	It should be possible to remove any package and replace it with another that exposes the same API, without breaking functionality in other packages.

Code Style

All code must conform to the PEP 8 style guide [https://www.python.org/dev/peps/pep-0008] with the following exceptions:

	Maximum line length of 100

We handle code formatting with black [https://github.com/psf/black] with the line-length option set to 80. This ensures a consistent style across the project and saves time by not having to be opinionated.

Naming Conventions

Names must adhere to PEP 8 naming conventions [https://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions]:

	Modules have short, all-lowercase names. Underscores can be used in the module name if it improves readability.

	Class names use the CapWords convention.

	Exceptions follow the same conventions as other classes.

	Function names are lowercase, with words separated by underscores when it improves readability.

	Method names and instance variables follow the same conventions as functions.

	Constants use all capital letters with underscores separating words.

Leading Underscores

A single leading underscore marks an object as private.

	Classes and functions with one leading underscore are only used in the module where they are declared. They must not be imported.

	Class attributes and methods with one leading underscore must only be accessed by methods within the same class.

Booleans

	Boolean values should be prefixed with is_.

	Booleans must not represent negative properties, (e.g. is_not_set). This can result in double-negative evaluations which are not intuitive for readers.

	Methods that return a single boolean should use the @property [https://docs.python.org/3.10/library/functions.html#property] decorator.

Methods

The following conventions should be used when naming functions or methods. Consistent naming provides logical consistency throughout the codebase and makes it easier for future readers to understand what a method does (and does not) do.

	get_: For simple data retrieval without any side effects.

	fetch_: For retreivals that may have some sort of side effect.

	build_: For creation of a new object that is derived from some other data.

	set_: For adding a new value or modifying an existing one within an object.

	add_: For adding a new attribute or other value to an object. Raises an exception if the value already exists.

	replace_: For mutating an object. Should return None on success or raise an exception if something is wrong.

	compare_: For comparing values. Returns True or False, does not raise an exception.

	validate_: Returns None or raises an exception if something is wrong.

	from_: For class methods that instantiate an object based on the given input data.

For other functionality, choose names that clearly communicate intent without being overly verbose. Focus on what the method does, not on how the method does it.

Imports

Import sequencing is handled with isort [https://github.com/timothycrosley/isort]. We follow these additional rules:

Standard Library Imports

Standard libraries should be imported absolutely and without aliasing. Importing the library aids readability, as other users may be familiar with that library.

Good
import os
os.stat('.')

Bad
from os import stat
stat('.')

Internal Imports

Internal imports are those between two modules inside the same Vyper package.

	Internal imports may use either import or from .. syntax. The imported value should be a module, not an object. Importing modules instead of objects avoids circular dependency issues.

	Internal imports may be aliased where it aids readability.

	Internal imports must use absolute paths. Relative imports cause issues when the module is moved.

Good
import vyper.ast.nodes as nodes
from vyper.ast import nodes

Bad, `get_node` is a function
from vyper.ast.nodes import get_node

Bad, do not use relative import paths
from . import nodes

Cross-Package Imports

Cross-package imports are imports between one Vyper package and another.

	Cross-package imports must not request anything beyond the root namespace of the target package.

	Cross-package imports may be aliased where it aids readability.

	Cross-package imports may use from [module] import [package] syntax.

Good
from vyper.ast import fold
from vyper import ast as vy_ast

Bad, do not import beyond the root namespace
from vyper.ast.annotation import annotate_python_ast

Exceptions

We use custom exception classes to indicate what has gone wrong during compilation.

	All raised exceptions must use an exception class that appropriately describes what has gone wrong. When none fits, or when using a single exception class for an overly broad range of errors, consider creating a new class.

	Builtin Python exceptions must not be raised intentionally. An unhandled builtin exception indicates a bug in the codebase.

	Use CompilerPanic for errors that are not caused by the user.

Strings

Strings substitutions should be performed via formatted string literals [https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals] rather than the str.format method or other techniques.

Type Annotations

	All publicly exposed classes and methods should include PEP 484 [https://www.python.org/dev/peps/pep-0484/] annotations for all arguments and return values.

	Type annotations should be included directly in the source. Stub files [https://www.python.org/dev/peps/pep-0484/#stub-files] may be used where there is a valid reason. Source files using stubs must still be annotated to aid readability.

	Internal methods should include type annotations.

Tests

We use the pytest [https://docs.pytest.org/en/latest/] framework for testing, and eth-tester for our local development chain.

Best Practices

	pytest functionality should not be imported with from ... style syntax, particularly pytest.raises [https://docs.pytest.org/en/latest/reference/reference.html#pytest.raises]. Importing the library itself aids readability.

	Tests must not be interdependent. We use xdist to execute tests in parallel. You cannot rely on which order tests will execute in, or that two tests will execute in the same process.

	Test cases should be designed with a minimalistic approach. Each test should verify a single behavior. A good test is one with few assertions, and where it is immediately obvious exactly what is being tested.

	Where logical, tests should be parametrized [https://docs.pytest.org/en/latest/parametrize.html] or use property-based [https://hypothesis.works/] testing.

	Tests must not involve mocking.

Directory Structure

Where possible, the test suite should copy the structure of main Vyper package. For example, test cases for vyper/context/types/ should exist at tests/context/types/.

Filenames

Test files must use the following naming conventions:

	test_[module].py: When all tests for a module are contained in a single file.

	test_[module]_[functionality].py: When tests for a module are split across multiple files.

Fixtures

	Fixtures should be stored in conftest.py rather than the test file itself.

	conftest.py files must not exist more than one subdirectory beyond the initial tests/ directory.

	The functionality of a fixture must be fully documented, either via docstrings or comments.

Documentation

It is important to maintain comprehensive and up-to-date documentation for the Vyper language.

	Documentation must accurately reflect the current state of the master branch on Github.

	New functionality must not be added without corresponding documentation updates.

Writing Style

We use imperative, present tense to describe APIs: “return” not “returns”. One way to test if we have it right is to complete the following sentence:

“If we call this API it will: …”

For narrative style documentation, we prefer the use of first-person “we” form over second-person “you” form.

Additionally, we recommend the following best practices when writing documentation:

	Use terms consistently.

	Avoid ambiguous pronouns.

	Eliminate unneeded words.

	Establish key points at the start of a document.

	Focus each paragraph on a single topic.

	Focus each sentence on a single idea.

	Use a numbered list when order is important and a bulleted list when order is irrelevant.

	Introduce lists and tables appropriately.

Google’s technical writing courses [https://developers.google.com/tech-writing] are a valuable resource. We recommend reviewing them before any significant documentation work.

API Directives

	All API documentation must use standard Python directives [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#the-python-domain].

	Where possible, references to syntax should use appropriate Python roles [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#cross-referencing-syntax].

	External references may use intersphinx roles [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html].

Headers

	Each documentation section must begin with a label [https://www.sphinx-doc.org/en/stable/usage/restructuredtext/roles.html#cross-referencing-arbitrary-locations] of the same name as the filename for that section. For example, this section’s filename is style-guide.rst, so the RST opens with a label _style-guide.

	Section headers should use the following sequence, from top to bottom: #, =, -, *, ^.

Internal Documentation

Internal documentation is vital to aid other contributors in understanding the layout of the Vyper codebase.

We handle internal documentation in the following ways:

	A README.md must be included in each first-level subdirectory of the Vyper package. The readme explain the purpose, organization and control flow of the subdirectory.

	All publicly exposed classes and methods must include detailed docstrings.

	Internal methods should include docstrings, or at minimum comments.

	Any code that may be considered “clever” or “magic” must include comments explaining exactly what is happening.

Docstrings should be formatted according to the NumPy docstring style [https://numpydoc.readthedocs.io/en/latest/format.html].

Commit Messages

Contributors should adhere to the following standards and best practices when making commits to be merged into the Vyper codebase.

Maintainers may request a rebase, or choose to squash merge pull requests that do not follow these standards.

Conventional Commits

Commit messages should adhere to the Conventional Commits [https://www.conventionalcommits.org/] standard. A conventional commit message is structured as follows:

<type>[optional scope]: <description>

[optional body]

[optional footer]

The commit contains the following elements, to communicate intent to the consumers of your library:

	fix: a commit of the type fix patches a bug in your codebase (this correlates with PATCH in semantic versioning).

	feat: a commit of the type feat introduces a new feature to the codebase (this correlates with MINOR in semantic versioning).

	BREAKING CHANGE: a commit that has the text BREAKING CHANGE: at the beginning of its optional body or footer section introduces a breaking API change (correlating with MAJOR in semantic versioning). A BREAKING CHANGE can be part of commits of any type.

The use of commit types other than fix: and feat: is recommended. For example: docs:, style:, refactor:, test:, chore:, or improvement:. These tags are not mandated by the specification and have no implicit effect in semantic versioning.

Best Practices

We recommend the following best practices for commit messages (taken from How To Write a Commit Message [https://chris.beams.io/posts/git-commit/]):

	Limit the subject line to 50 characters.

	Use imperative, present tense in the subject line.

	Capitalize the subject line.

	Do not end the subject line with a period.

	Separate the subject from the body with a blank line.

	Wrap the body at 72 characters.

	Use the body to explain what and why vs. how.

Here’s an example commit message adhering to the above practices:

Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various tools like `log`, `shortlog`
and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequences of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for the bullet, preceded
 by a single space, with blank lines in between, but conventions
 vary here

If you use an issue tracker, put references to them at the bottom,
like this:

Resolves: #XXX
See also: #XXY, #XXXZ

Vyper Versioning Guideline

Motivation

Vyper has different groups that are considered “users”:

	Smart Contract Developers (Developers)

	Package Integrators (Integrators)

	Security Professionals (Auditors)

Each set of users must understand which changes to the compiler may require their
attention, and how these changes may impact their use of the compiler.
This guide defines what scope each compiler change may have and its potential impact based
on the type of user, so that users can stay informed about the progress of Vyper.

	Group

	How they use Vyper

	Developers

	Write smart contracts in Vyper

	Integrators

	Integrating Vyper package or CLI into tools

	Auditors

	Aware of Vyper features and security issues

A big part of Vyper’s “public API” is the language grammar.
The syntax of the language is the main touchpoint all parties have with Vyper,
so it’s important to discuss changes to the language from the viewpoint of dependability.
Users expect that all contracts written in an earlier version of Vyper will work seamlessly
with later versions, or that they will be reasonably informed when this isn’t possible.
The Vyper package itself and its CLI utilities also has a fairly well-defined public API,
which consists of the available features in Vyper’s
exported package [https://github.com/vyperlang/vyper/blob/master/vyper/__init__.py],
the top level modules under the package, and all CLI scripts.

Version Types

This guide was adapted from semantic versioning [https://semver.org/].
It defines a format for version numbers that looks like MAJOR.MINOR.PATCH[-STAGE.DEVNUM].
We will periodically release updates according to this format, with the release decided via
the following guidelines.

Major Release X.0.0

Changes to the grammar cannot be made in a backwards incompatible way without changing Major
versions (e.g. v1.x -> v2.x).
It is to be expected that breaking changes to many features will occur when updating to a new Major release,
primarily for Developers that use Vyper to compile their contracts.
Major releases will have an audit performed prior to release (e.g. x.0.0 releases) and all
moderate or severe vulnerabilities will be addressed that are reported in the audit report.
minor or informational vulnerabilities should be addressed as well, although this may be
left up to the maintainers of Vyper to decide.

	Group

	Look For

	Developers

	Syntax deprecation, new features

	Integrators

	No changes

	Auditors

	Audit report w/ resolved changes

Minor Release x.Y.0

Minor version updates may add new features or fix a moderate or severe vulnerability,
and these will be detailed in the Release Notes for that release.
Minor releases may change the features or functionality offered by the package and CLI scripts in a
backwards-incompatible way that requires attention from an integrator.
Minor releases are required to fix a moderate or severe vulnerability,
but a minor or informational vulnerability can be fixed in Patch releases,
alongside documentation updates.

	Group

	Look For

	Developers

	New features, security bug fixes

	Integrators

	Changes to external API

	Auditors

	moderate or severe patches

Patch Release x.y.Z

Patch version releases will be released to fix documentation issues, usage bugs,
and minor or informational vulnerabilities found in Vyper.
Patch releases should only update error messages and documentation issues
relating to its external API.

	Group

	Look For

	Developers

	Doc updates, usage bug fixes, error messages

	Integrators

	Doc updates, usage bug fixes, error messages

	Auditors

	minor or informational patches

Vyper Security

As Vyper develops, it is very likely that we will encounter inconsistencies in how certain
language features can be used, and software bugs in the code the compiler generates.
Some of them may be quite serious, and can render a user’s compiled contract vulnerable to
exploitation for financial gain.
As we become aware of these vulnerabilities, we will work according to our
security policy [https://github.com/vyperlang/vyper/security/policy] to resolve these issues,
and eventually will publish the details of all reported vulnerabilities
here [https://github.com/vyperlang/vyper/security/advisories?state=published].
Fixes for these issues will also be noted in the Release Notes.

Vyper Next

There may be multiple Major versions in the process of development.
Work on new features that break compatibility with the existing grammar can
be maintained on a separate branch called next and represents the next
Major release of Vyper (provided in an unaudited state without Release Notes).
The work on the current branch will remain on the master branch with periodic
new releases using the process as mentioned above.

Any other branches of work outside of what is being tracked via master
will use the -alpha.[release #] (Alpha) to denote WIP updates,
and -beta.[release #] (Beta) to describe work that is eventually intended for release.
-rc.[release #] (Release Candidate) will only be used to denote candidate builds
prior to a Major release. An audit will be solicited for -rc.1 builds,
and subsequent releases may incorporate feedback during the audit.
The last Release Candidate will become the next Major release,
and will be made available alongside the full audit report summarizing the findings.

Pull Requests

Pull Requests can be opened against either master or next branch, depending on their content.
Changes that would increment a Minor or Patch release should target master,
whereas changes to syntax (as detailed above) should be opened against next.
The next branch will be periodically rebased against the master branch to pull in changes made
that were added to the latest supported version of Vyper.

Communication

Major and Minor versions should be communicated on appropriate communications channels to end users,
and Patch updates will usually not be discussed, unless there is a relevant reason to do so.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Z

_

 	
 	
 _abi_decode()

 	built-in function

 	
 	
 _abi_encode()

 	built-in function

A

 	
 	
 abs()

 	built-in function

 	ArgumentException

 	ArrayIndexException

 	arrays

 	
 	
 as_wei_value()

 	built-in function

 	
 auction

 	blind

 	open

B

 	
 	ballot

 	
 bitwise_and()

 	built-in function

 	
 bitwise_not()

 	built-in function

 	
 bitwise_or()

 	built-in function

 	
 bitwise_xor()

 	built-in function

 	blind auction

 	
 blockhash()

 	built-in function

 	bool

 	
 built-in function

 	_abi_decode()

 	_abi_encode()

 	abs()

 	as_wei_value()

 	bitwise_and()

 	bitwise_not()

 	bitwise_or()

 	bitwise_xor()

 	blockhash()

 	ceil()

 	concat()

 	convert()

 	create_copy_of()

 	create_from_blueprint()

 	create_minimal_proxy_to()

 	ecadd()

 	ecmul()

 	ecrecover()

 	empty()

 	epsilon()

 	extract32()

 	floor()

 	isqrt()

 	keccak256()

 	len()

 	max()

 	max_value()

 	method_id()

 	min()

 	min_value()

 	pow_mod256()

 	print()

 	raw_call()

 	raw_log()

 	raw_revert()

 	selfdestruct()

 	send()

 	sha256()

 	shift()

 	slice()

 	sqrt()

 	uint256_addmod()

 	uint256_mulmod()

 	uint2str()

 	unsafe_add()

 	unsafe_div()

 	unsafe_mul()

 	unsafe_sub()

 	
 	built-in;

 	bytes

C

 	
 	CallViolation

 	cancun

 	
 ceil()

 	built-in function

 	company stock

 	CompilerPanic

 	
 concat()

 	built-in function

 	
 	
 convert()

 	built-in function

 	
 create_copy_of()

 	built-in function

 	
 create_from_blueprint()

 	built-in function

 	
 create_minimal_proxy_to()

 	built-in function

 	crowdfund

D

 	
 	
 deploying

 	deploying;

 	
 	dynarrays

E

 	
 	
 ecadd()

 	built-in function

 	
 ecmul()

 	built-in function

 	
 ecrecover()

 	built-in function

 	
 empty()

 	built-in function

 	
 	
 epsilon()

 	built-in function

 	EventDeclarationException

 	EvmVersionException

 	
 extract32()

 	built-in function

F

 	
 	false

 	
 floor()

 	built-in function

 	
 	function

 	FunctionDeclarationException

I

 	
 	ImmutableViolation

 	initial

 	int

 	InterfaceViolation

 	intN

 	InvalidAttribute

 	
 	InvalidLiteral

 	InvalidOperation

 	InvalidReference

 	InvalidType

 	
 isqrt()

 	built-in function

 	IteratorException

J

 	
 	JSONError

K

 	
 	
 keccak256()

 	built-in function

L

 	
 	
 len()

 	built-in function

 	
 	london

M

 	
 	mapping

 	
 max()

 	built-in function

 	
 max_value()

 	built-in function

 	
 	
 method_id()

 	built-in function

 	
 min()

 	built-in function

 	
 min_value()

 	built-in function

N

 	
 	NamespaceCollision

 	
 	NatSpecSyntaxException

 	NonPayableViolation

O

 	
 	open auction

 	
 	OverflowException

P

 	
 	paris

 	
 pow_mod256()

 	built-in function

 	
 	
 print()

 	built-in function

 	purchases

R

 	
 	
 raw_call()

 	built-in function

 	
 raw_log()

 	built-in function

 	
 	
 raw_revert()

 	built-in function

 	reference

S

 	
 	
 selfdestruct()

 	built-in function

 	
 send()

 	built-in function

 	
 sha256()

 	built-in function

 	shanghai

 	
 shift()

 	built-in function

 	signed integer

 	
 	
 slice()

 	built-in function

 	
 sqrt()

 	built-in function

 	StateAccessViolation

 	
 stock

 	company

 	string

 	StructureException

 	SyntaxException

T

 	
 	true

 	
 	type

 	TypeMismatch

U

 	
 	uint

 	
 uint256_addmod()

 	built-in function

 	
 uint256_mulmod()

 	built-in function

 	
 uint2str()

 	built-in function

 	uintN

 	UndeclaredDefinition

 	
 	
 unsafe_add()

 	built-in function

 	
 unsafe_div()

 	built-in function

 	
 unsafe_mul()

 	built-in function

 	
 unsafe_sub()

 	built-in function

 	unsigned integer

V

 	
 	value

 	VariableDeclarationException

 	
 	VersionException

 	voting

Z

 	
 	ZeroDivisionException

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Vyper

 		
 Overview

 		
 Principles and Goals

 		
 Installing Vyper

 		
 Docker

 		
 PIP

 		
 Installing Python

 		
 Creating a virtual environment

 		
 Installing Vyper

 		
 nix

 		
 Installing Vyper

 		
 Vyper by Example

 		
 Simple Open Auction

 		
 Blind Auction

 		
 Safe Remote Purchases

 		
 Crowdfund

 		
 Voting

 		
 Company Stock

 		
 Structure of a Contract

 		
 Pragmas

 		
 Version Pragma

 		
 Optimization Mode

 		
 EVM Version

 		
 State Variables

 		
 Functions

 		
 Events

 		
 Interfaces

 		
 Structs

 		
 Types

 		
 Value Types

 		
 Boolean

 		
 Signed Integer (N bit)

 		
 Unsigned Integer (N bit)

 		
 Decimals

 		
 Address

 		
 M-byte-wide Fixed Size Byte Array

 		
 Byte Arrays

 		
 Strings

 		
 Flags

 		
 Reference Types

 		
 Fixed-size Lists

 		
 Dynamic Arrays

 		
 Structs

 		
 Mappings

 		
 Initial Values

 		
 Type Conversions

 		
 Environment Variables and Constants

 		
 Environment Variables

 		
 Block and Transaction Properties

 		
 The self Variable

 		
 Custom Constants

 		
 Statements

 		
 Control Flow

 		
 break

 		
 continue

 		
 pass

 		
 return

 		
 Event Logging

 		
 log

 		
 Assertions and Exceptions

 		
 raise

 		
 assert

 		
 Control Structures

 		
 Functions

 		
 Visibility

 		
 Mutability

 		
 Re-entrancy Locks

 		
 The __default__ Function

 		
 The __init__ Function

 		
 Decorators Reference

 		
 if statements

 		
 for loops

 		
 Array Iteration

 		
 Range Iteration

 		
 Scoping and Declarations

 		
 Variable Declaration

 		
 Declaring Public Variables

 		
 Declaring Immutable Variables

 		
 Tuple Assignment

 		
 Storage Layout

 		
 Scoping Rules

 		
 Module Scope

 		
 Function Scope

 		
 Block Scopes

 		
 Built-in Functions

 		
 Bitwise Operations

 		
 bitwise_and()

 		
 bitwise_not()

 		
 bitwise_or()

 		
 bitwise_xor()

 		
 shift()

 		
 Chain Interaction

 		
 create_minimal_proxy_to()

 		
 create_copy_of()

 		
 create_from_blueprint()

 		
 raw_call()

 		
 raw_log()

 		
 raw_revert()

 		
 selfdestruct()

 		
 send()

 		
 Cryptography

 		
 ecadd()

 		
 ecmul()

 		
 ecrecover()

 		
 keccak256()

 		
 sha256()

 		
 Data Manipulation

 		
 concat()

 		
 convert()

 		
 uint2str()

 		
 extract32()

 		
 slice()

 		
 Math

 		
 abs()

 		
 ceil()

 		
 epsilon()

 		
 floor()

 		
 max()

 		
 max_value()

 		
 min()

 		
 min_value()

 		
 pow_mod256()

 		
 sqrt()

 		
 isqrt()

 		
 uint256_addmod()

 		
 uint256_mulmod()

 		
 unsafe_add()

 		
 unsafe_sub()

 		
 unsafe_mul()

 		
 unsafe_div()

 		
 Utilities

 		
 as_wei_value()

 		
 blockhash()

 		
 empty()

 		
 len()

 		
 method_id()

 		
 _abi_encode()

 		
 _abi_decode()

 		
 print()

 		
 Interfaces

 		
 Declaring and using Interfaces

 		
 Importing Interfaces

 		
 Imports via import

 		
 Imports via from ... import

 		
 Searching For Interface Files

 		
 Built-in Interfaces

 		
 Implementing an Interface

 		
 Extracting Interfaces

 		
 Event Logging

 		
 Example of Logging

 		
 Declaring Events

 		
 Logging Events

 		
 Listening for Events

 		
 NatSpec Metadata

 		
 Example

 		
 Tags

 		
 Documentation Output

 		
 User Documentation

 		
 Developer Documentation

 		
 Compiling a Contract

 		
 Command-Line Compiler Tools

 		
 vyper

 		
 vyper-json

 		
 Online Compilers

 		
 Try VyperLang!

 		
 Remix IDE

 		
 Compiler Optimization Modes

 		
 Setting the Target EVM Version

 		
 Target Options

 		
 Compiler Input and Output JSON Description

 		
 Input JSON Description

 		
 Output JSON Description

 		
 Compiler Exceptions

 		
 ArgumentException

 		
 CallViolation

 		
 ArrayIndexException

 		
 EventDeclarationException

 		
 EvmVersionException

 		
 FunctionDeclarationException

 		
 ImmutableViolation

 		
 InterfaceViolation

 		
 InvalidAttribute

 		
 InvalidLiteral

 		
 InvalidOperation

 		
 InvalidReference

 		
 InvalidType

 		
 IteratorException

 		
 JSONError

 		
 NamespaceCollision

 		
 NatSpecSyntaxException

 		
 NonPayableViolation

 		
 OverflowException

 		
 StateAccessViolation

 		
 StructureException

 		
 SyntaxException

 		
 TypeMismatch

 		
 UndeclaredDefinition

 		
 VariableDeclarationException

 		
 VersionException

 		
 ZeroDivisionException

 		
 CompilerPanic

 		
 CompilerPanic

 		
 Deploying a Contract

 		
 Testing a Contract

 		
 Testing with Brownie

 		
 Getting Started

 		
 Writing a Basic Test

 		
 Testing Events

 		
 Handling Reverted Transactions

 		
 Testing with Ethereum Tester

 		
 Getting Started

 		
 Writing a Basic Test

 		
 Events and Failed Transactions

 		
 Other resources and learning material

 		
 General

 		
 Frameworks and tooling

 		
 Security

 		
 Conference presentations

 		
 Unmaintained

 		
 Release Notes

 		
 v0.4.0b1 (â��Naginiâ��)

 		
 Date released: TBD

 		
 v0.3.10 (â��Black Adderâ��)

 		
 Date released: 2023-10-04

 		
 v0.3.9 (â��Common Adderâ��)

 		
 v0.3.8

 		
 v0.3.7

 		
 v0.3.6

 		
 v0.3.5

 		
 v0.3.4

 		
 v0.3.3

 		
 v0.3.2

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.16

 		
 v0.2.15

 		
 v0.2.14

 		
 v0.2.13

 		
 v0.2.12

 		
 v0.2.11

 		
 v0.2.10

 		
 v0.2.9

 		
 v0.2.8

 		
 v0.2.7

 		
 v0.2.6

 		
 v0.2.5

 		
 v0.2.4

 		
 v0.2.3

 		
 v0.2.2

 		
 v0.2.1

 		
 v0.1.0-beta.17

 		
 v0.1.0-beta.16

 		
 v0.1.0-beta.15

 		
 v0.1.0-beta.14

 		
 v0.1.0-beta.13

 		
 v0.1.0-beta.12

 		
 v0.1.0-beta.11

 		
 v0.1.0-beta.10

 		
 v0.1.0-beta.9

 		
 Prior to v0.1.0-beta.9

 		
 Contributing

 		
 Types of Contributions

 		
 How to Suggest Improvements

 		
 How to Report Issues

 		
 Fix Bugs

 		
 Style Guide

 		
 Workflow for Pull Requests

 		
 Implementing New Features

 		
 Style Guide

 		
 Project Organization

 		
 Code Style

 		
 Naming Conventions

 		
 Imports

 		
 Exceptions

 		
 Strings

 		
 Type Annotations

 		
 Tests

 		
 Best Practices

 		
 Directory Structure

 		
 Filenames

 		
 Fixtures

 		
 Documentation

 		
 Writing Style

 		
 API Directives

 		
 Headers

 		
 Internal Documentation

 		
 Commit Messages

 		
 Conventional Commits

 		
 Best Practices

 		
 Vyper Versioning Guideline

 		
 Motivation

 		
 Version Types

 		
 Major Release X.0.0

 		
 Minor Release x.Y.0

 		
 Patch Release x.y.Z

 		
 Vyper Security

 		
 Vyper Next

 		
 Pull Requests

 		
 Communication

