

Vyper

[image: Vyper logo]

Vyper is a contract-oriented, pythonic programming language that targets the Ethereum Virtual Machine (EVM) [http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine]

Principles and Goals

	Security: It should be possible and natural to build secure smart-contracts in Vyper.

	Language and compiler simplicity: The language and the compiler implementation should strive to be simple.

	Auditability: Vyper code should be maximally human-readable. Furthermore, it should be maximally difficult to write misleading code. Simplicity for the reader
is more important than simplicity for the writer, and simplicity for readers with low prior experience with Vyper (and low prior experience with programming in
general) is particularly important.

Because of this Vyper aims to provide the following features:

	Bounds and overflow checking: On array accesses as well as on arithmetic level.

	Support for signed integers and decimal fixed point numbers

	Decidability: It should be possible to compute a precise upper bound for the gas consumption of any function call.

	Strong typing: Including support for units (e.g. timestamp, timedelta, seconds, wei, wei per second, meters per second squared).

	Small and understandable compiler code

	Limited support for pure functions: Anything marked constant is not allowed to change the state.

Following the principles and goals, Vyper does not provide the following features:

	Modifiers: For example in Solidity you can define a function foo() mod1 { ... }, where mod1 can be defined elsewhere in the code to include a check that is done before execution,
a check that is done after execution, some state changes, or possibly other things. Vyper does not have this, because it makes it too easy to write misleading code. mod1 just looks
too innocuous for something that could add arbitrary pre-conditions, post-conditions or state changes. Also, it encourages people to write code where the execution jumps around the file,
harming auditability. The usual use case for a modifier is something that performs a single check before execution of a program; our recommendation is to simply inline these checks as asserts.

	Class inheritance: Class inheritance requires people to jump between multiple files to understand what a program is doing, and requires people to understand the rules of precedence in case of conflicts
(“Which class’s function ‘X’ is the one that’s actually used?”). Hence, it makes code too complicated to understand which negatively impacts auditability.

	Inline assembly: Adding inline assembly would make it no longer possible to search for a variable name in order to find all instances where that variable is read or modified.

	Function overloading - This can cause lots of confusion on which function is called at any given time. Thus it’s easier to write missleading code (foo("hello") logs “hello” but foo("hello", "world") steals you funds).
Another problem with function overloading is that it makes the code much harder to search through as you have to keep track on which call refers to which function.

	Operator overloading: Operator overloading makes writing misleading code possible. For example “+” could be overloaded so that it executes commands that are not visible at a first glance, such as sending funds the
user did not want to send.

	Recursive calling: Recursive calling makes it impossible to set an upper bound on gas limits, opening the door for gas limit attacks.

	Infinite-length loops: Similar to recursive calling, infinite-length loops make it impossible to set an upper bound on gas limits, opening the door for gas limit attacks.

	Binary fixed point: Decimal fixed point is better, because any decimal fixed point value written as a literal in code has an exact representation, whereas with binary fixed point approximations are often required
(e.g. (0.2)10 = (0.001100110011…)2, which needs to be truncated), leading to unintuitive results, e.g. in Python 0.3 + 0.3 + 0.3 + 0.1 != 1.

Some changes that may be considered after Metropolis when STATICCALL [https://github.com/ethereum/EIPs/pull/214/files] becomes available include:

	Forbidding state changes after non-static calls unless the address being non-statically called is explicitly marked “trusted”. This would reduce risk of re-entrancy attacks.

	Forbidding “inline” non-static calls, e.g. send(some_address, contract.do_something_and_return_a_weivalue()), enforcing clear separation between “call to get a response” and “call to do something”.

Vyper does NOT strive to be a 100% replacement for everything that can be done in Solidity; it will deliberately forbid things or make things harder if it deems fit to do so for the goal of
increasing security.

Glossary

	Installing Vyper
	Prerequisites

	Installation

	PIP

	Docker

	Snap

	Compiling a Contract

	Testing a Contract
	Vyper Contract and Basic Fixtures

	Load Contract and Basic Tests

	Events and Failed Transactions

	Deploying a Contract

	Structure of a Contract
	State Variables

	Functions

	Events

	NatSpec Metadata

	Contract Interfaces

	Vyper by Example
	Simple Open Auction

	Blind Auction

	Safe Remote Purchases

	Crowdfund

	Voting

	Company Stock

	Event Logging
	Example of Logging

	Declaring Events

	Logging Events

	Listening for Events

	Contributing
	Types of Contributions

	How to Suggest Improvements

	How to Report Issues

	Fix Bugs

	Workflow for Pull Requests

	Frequently Asked Questions
	Basic Questions

	Built in Functions
	Functions

	Low Level Built in Functions
	Low Level Functions

	Types
	Value Types

	Reference Types

	Built In Constants

	Custom Constants

	Initial Values

	Type Conversions

	Release Notes
	v0.1.0-beta.12

	v0.1.0-beta.11

	v0.1.0-beta.10

	v0.1.0-beta.9

	Prior to v0.1.0-beta.9

Installing Vyper

Don’t panic if the installation fails. Vyper is still under development and
undergoes constant changes. Installation will be much more simplified and
optimized after a stable version release.

Take a deep breath, follow the instructions, and please
create an issue [https://github.com/ethereum/vyper/issues] if you encounter
any errors.

Note

The easiest way to try out the language, experiment with examples, and compile code to bytecode
or LLL is to use the online compiler at https://vyper.online/.

Prerequisites

Installing Python 3.6

Vyper can only be built using Python 3.6 and higher. If you are already running
Python 3.6, skip to the next section, else follow the instructions here to make
sure you have the correct Python version installed, and are using that version.

Ubuntu

16.04 and older

Start by making sure your packages are up-to-date:

sudo apt-get update
sudo apt-get -y upgrade

Install Python 3.6 and some necessary packages:

sudo apt-get install build-essential libssl-dev libffi-dev
wget https://www.python.org/ftp/python/3.6.2/Python-3.6.2.tgz
tar xfz Python-3.6.2.tgz
cd Python-3.6.2/
./configure --prefix /usr/local/lib/python3.6
sudo make
sudo make install

16.10 and newer

From Ubuntu 16.10 onwards, the Python 3.6 version is in the universe
repository.

Run the following commands to install:

sudo apt-get update
sudo apt-get install python3.6

Note

If you get the error Python.h: No such file or directory you need to install the python header files for the Python C API with

sudo apt-get install python3-dev

Using a BASH script

Vyper can be installed using a bash script.

https://github.com/balajipachai/Scripts/blob/master/install_vyper/install_vyper_ubuntu.sh

Reminder: Please read and understand the commands in any bash script before executing, especially with sudo.

Arch

Using your aur helper of choice (yay here).

yay -S vyper

MacOS

Make sure you have Homebrew installed. If you don’t have the brew command
available on the terminal, follow these instructions [https://docs.brew.sh/Installation.html]
to get Homebrew on your system.

To install Python 3.6, follow the instructions here:
Installing Python 3 on Mac OS X [http://python-guide.readthedocs.io/en/latest/starting/install3/osx/]

Also, ensure the following libraries are installed using brew:

brew install gmp leveldb

Windows

Windows users can first install Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/install-win10] and then follow the instructions for Ubuntu, or install Docker for Windows [https://docs.docker.com/docker-for-windows/install/] and then follow the instructions for Docker.

Note

	Windows Subsystem for Linux is only available for Windows 10.

	Windows versions that are < 10 and Windows 10 Home should install the slightly outdated Docker Toolbox [https://docs.docker.com/toolbox/toolbox_install_windows/], as explained in the link.

Creating a virtual environment

It is strongly recommended to install Vyper in a virtual Python
environment, so that new packages installed and dependencies built are
strictly contained in your Vyper project and will not alter or affect your
other development environment set-up.

To create a new virtual environment for Vyper run the following commands:

sudo apt install virtualenv
virtualenv -p python3.6 --no-site-packages ~/vyper-venv
source ~/vyper-venv/bin/activate

To find out more about virtual environments, check out:
virtualenv guide [https://virtualenv.pypa.io/en/stable/].

You can also create a virtual environment without virtualenv:

python3.6 -m venv ~/vyper-env
source ~/vyper-env/bin/activate

Installation

Again, it is strongly recommended to install Vyper in a virtual Python environment.
This guide assumes you are in a virtual environment containing Python 3.6.

Get the latest version of Vyper by cloning the Github repository, and run the
install and test commands:

git clone https://github.com/ethereum/vyper.git
cd vyper
make
make dev-deps
make test

Additionally, you may try to compile an example contract by running:

vyper examples/crowdfund.vy

If everything works correctly, you are now able to compile your own smart contracts written in Vyper.
If any unexpected errors or exceptions are encountered, please feel free to create an issue [https://github.com/ethereum/vyper/issues/new].

Note

If you get the error fatal error: openssl/aes.h: No such file or directory in the output of make, then run sudo apt-get install libssl-dev1, then run make again.

For MacOS users:

Apple has deprecated use of OpenSSL in favor of its own TLS and crypto
libraries. This means that you will need to export some OpenSSL settings
yourself, before you can install Vyper.

Use the following commands:

export CFLAGS="-I$(brew --prefix openssl)/include"
export LDFLAGS="-L$(brew --prefix openssl)/lib"
pip install scrypt

Now you can run the install and test commands again:

make
make dev-deps
make test

If you get the error ld: library not found for -lyaml in the output of make, make sure libyaml is installed using brew info libyaml. If it is installed, add its location to the compile flags as well:

export CFLAGS="-I$(brew --prefix openssl)/include -I$(brew --prefix libyaml)/include"
export LDFLAGS="-L$(brew --prefix openssl)/lib -L$(brew --prefix libyaml)/lib"

You can then run make and make test again.

PIP

Each tagged version of vyper is also uploaded to pypi, and can be installed using pip.

pip install vyper

To install a specific version use:

pip install vyper==0.1.0b2

Docker

Dockerhub

Vyper can be downloaded as docker image from dockerhub:

docker pull ethereum/vyper

To run the compiler use the docker run command:

docker run -v $(pwd):/code ethereum/vyper /code/<contract_file.vy>

Alternatively you can log into the docker image and execute vyper on the prompt.

docker run -v $(pwd):/code/ -it --entrypoint /bin/bash ethereum/vyper
root@d35252d1fb1b:/code# vyper <contract_file.vy>

The normal paramaters are also supported, for example:

docker run -v $(pwd):/code ethereum/vyper -f abi /code/<contract_file.vy>
[{'name': 'test1', 'outputs': [], 'inputs': [{'type': 'uint256', 'name': 'a'}, {'type': 'bytes', 'name': 'b'}], 'constant': False, 'payable': False, 'type': 'function', 'gas': 441}, {'name': 'test2', 'outputs': [], 'inputs': [{'type': 'uint256', 'name': 'a'}], 'constant': False, 'payable': False, 'type': 'function', 'gas': 316}]

Dockerfile

A Dockerfile is provided in the master branch of the repository. In order to build a Docker Image please run:

docker build https://github.com/ethereum/vyper.git -t vyper:1
docker run -it --entrypoint /bin/bash vyper:1

To ensure that everything works correctly after the installtion, please run the test commands
and try compiling a contract:

python setup.py test
vyper examples/crowdfund.vy

Snap

Vyper is published in the snap store. In any of the supported Linux distros [https://snapcraft.io/docs/core/install], install it with (Note that installing the above snap is the latest master):

sudo snap install vyper --edge --devmode

To install the latest beta version use:

sudo snap install vyper --beta --devmode

Compiling a Contract

To compile a contract, use:

vyper yourFileName.vy

You can also compile to other formats such as ABI using the below format:

vyper -f ['abi', 'bytecode', 'bytecode_runtime', 'ir', 'asm', 'source_map', 'method_identifiers', 'combined_json'] yourFileName.vy

It is also possible to use the -f json option, which is a legacy alias for -f abi.

Note

Since .vy is not officially a language supported by any syntax highlighters or linters,
it is recommended to name your Vyper file ending with .py in order to have Python syntax highlighting.

An online compiler [https://vyper.online/] is available as well, which lets you experiment with
the language without having to install Vyper. The online compiler allows you to compile to bytecode and/or LLL.

Note

While the vyper version of the online compiler is updated on a regular basis it might
be a bit behind the latest version found in the master branch of the repository.

Testing a Contract

This documentation recommends the use of the pytest [https://docs.pytest.org/en/latest/contents.html] framework with
the ethereum-tester [https://github.com/ethereum/ethereum-tester] package.
Prior to testing, the vyper specific contract conversion and the blockchain related fixtures need to be set up.
These fixtures will be used in every test file and should therefore be defined in
conftest.py [https://docs.pytest.org/en/latest/fixture.html#conftest-py-sharing-fixture-functions].

Note

Since the testing is done in the pytest framework, you can make use of
pytest.ini, tox.ini and setup.cfg [https://docs.pytest.org/en/latest/customize.html] and you can use most IDEs’
pytest plugins.

Vyper Contract and Basic Fixtures

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

	from eth_tester import (
 EthereumTester,
)
from eth_tester.exceptions import (
 TransactionFailed,
)
from eth_utils.toolz import (
 compose,
)
import pytest
from web3 import Web3
from web3.contract import (
 Contract,
 mk_collision_prop,
)
from web3.providers.eth_tester import (
 EthereumTesterProvider,
)

from vyper import (
 compiler,
)

class VyperMethod:
 ALLOWED_MODIFIERS = {'call', 'estimateGas', 'transact', 'buildTransaction'}

 def __init__(self, function, normalizers=None):
 self._function = function
 self._function._return_data_normalizers = normalizers

 def __call__(self, *args, **kwargs):
 return self.__prepared_function(*args, **kwargs)

 def __prepared_function(self, *args, **kwargs):
 if not kwargs:
 modifier, modifier_dict = 'call', {}
 fn_abi = [
 x
 for x
 in self._function.contract_abi
 if x.get('name') == self._function.function_identifier
].pop()
 # To make tests faster just supply some high gas value.
 modifier_dict.update({'gas': fn_abi.get('gas', 0) + 50000})
 elif len(kwargs) == 1:
 modifier, modifier_dict = kwargs.popitem()
 if modifier not in self.ALLOWED_MODIFIERS:
 raise TypeError(
 "The only allowed keyword arguments are: %s" % self.ALLOWED_MODIFIERS)
 else:
 raise TypeError("Use up to one keyword argument, one of: %s" % self.ALLOWED_MODIFIERS)
 return getattr(self._function(*args), modifier)(modifier_dict)

class VyperContract:
 """
 An alternative Contract Factory which invokes all methods as `call()`,
 unless you add a keyword argument. The keyword argument assigns the prep method.
 This call
 > contract.withdraw(amount, transact={'from': eth.accounts[1], 'gas': 100000, ...})
 is equivalent to this call in the classic contract:
 > contract.functions.withdraw(amount).transact({'from': eth.accounts[1], 'gas': 100000, ...})
 """

 def __init__(self, classic_contract, method_class=VyperMethod):
 classic_contract._return_data_normalizers += CONCISE_NORMALIZERS
 self._classic_contract = classic_contract
 self.address = self._classic_contract.address
 protected_fn_names = [fn for fn in dir(self) if not fn.endswith('__')]
 for fn_name in self._classic_contract.functions:
 # Override namespace collisions
 if fn_name in protected_fn_names:
 _concise_method = mk_collision_prop(fn_name)
 else:
 _classic_method = getattr(
 self._classic_contract.functions,
 fn_name)
 _concise_method = method_class(
 _classic_method,
 self._classic_contract._return_data_normalizers
)
 setattr(self, fn_name, _concise_method)

 @classmethod
 def factory(cls, *args, **kwargs):
 return compose(cls, Contract.factory(*args, **kwargs))

def _none_addr(datatype, data):
 if datatype == 'address' and int(data, base=16) == 0:
 return (datatype, None)
 else:
 return (datatype, data)

CONCISE_NORMALIZERS = (_none_addr,)

@pytest.fixture
def tester():
 t = EthereumTester()
 return t

def zero_gas_price_strategy(web3, transaction_params=None):
 return 0 # zero gas price makes testing simpler.

@pytest.fixture
def w3(tester):
 w3 = Web3(EthereumTesterProvider(tester))
 w3.eth.setGasPriceStrategy(zero_gas_price_strategy)
 return w3

def _get_contract(w3, source_code, *args, **kwargs):
 out = compiler.compile_code(
 source_code,
 ['abi', 'bytecode'],
 interface_codes=kwargs.pop('interface_codes', None),
)
 abi = out['abi']
 bytecode = out['bytecode']
 value = kwargs.pop('value_in_eth', 0) * 10 ** 18 # Handle deploying with an eth value.
 c = w3.eth.contract(abi=abi, bytecode=bytecode)
 deploy_transaction = c.constructor(*args)
 tx_info = {
 'from': w3.eth.accounts[0],
 'value': value,
 'gasPrice': 0,
 }
 tx_info.update(kwargs)
 tx_hash = deploy_transaction.transact(tx_info)
 address = w3.eth.getTransactionReceipt(tx_hash)['contractAddress']
 contract = w3.eth.contract(
 address,
 abi=abi,
 bytecode=bytecode,
 ContractFactoryClass=VyperContract,
)
 return contract

@pytest.fixture
def get_contract(w3):
 def get_contract(source_code, *args, **kwargs):
 return _get_contract(w3, source_code, *args, **kwargs)

 return get_contract

@pytest.fixture
def get_logs(w3):
 def get_logs(tx_hash, c, event_name):
 tx_receipt = w3.eth.getTransactionReceipt(tx_hash)
 logs = c._classic_contract.events[event_name]().processReceipt(tx_receipt)
 return logs

 return get_logs

@pytest.fixture
def assert_tx_failed(tester):
 def assert_tx_failed(function_to_test, exception=TransactionFailed, exc_text=None):
 snapshot_id = tester.take_snapshot()
 with pytest.raises(exception) as excinfo:
 function_to_test()
 tester.revert_to_snapshot(snapshot_id)
 if exc_text:
 assert exc_text in str(excinfo.value)

 return assert_tx_failed

This is the base requirement to load a vyper contract and start testing. The last two fixtures are optional and will be
discussed later. The rest of this chapter assumes, that you have this code set up in your conftest.py file.
Alternatively, you can import the fixtures to conftest.py or use
pytest plugins [https://docs.pytest.org/en/latest/plugins.html].

Load Contract and Basic Tests

Assume the following simple contract storage.vy. It has a single integer variable and a function to set that value.

storedData: public(int128)

@public
def __init__(_x: int128):
 self.storedData = _x

@public
def set(_x: int128):
 self.storedData = _x

We create a test file test_storage.py where we write our tests in pytest style.

import pytest

INITIAL_VALUE = 4

@pytest.fixture
def storage_contract(w3, get_contract):
 with open('examples/storage/storage.vy') as f:
 contract_code = f.read()
 # Pass constructor variables directly to the contract
 contract = get_contract(contract_code, INITIAL_VALUE)
 return contract

def test_initial_state(storage_contract):
 # Check if the constructor of the contract is set up properly
 assert storage_contract.storedData() == INITIAL_VALUE

def test_set(w3, storage_contract):
 k0 = w3.eth.accounts[0]

 # Let k0 try to set the value to 10
 storage_contract.set(10, transact={"from": k0})
 assert storage_contract.storedData() == 10 # Directly access storedData

 # Let k0 try to set the value to -5
 storage_contract.set(-5, transact={"from": k0})
 assert storage_contract.storedData() == -5

First we create a fixture for the contract which will compile our contract and set up a Web3 contract object.
We then use this fixture for our test functions to interact with the contract.

Note

To run the tests, call pytest or python -m pytest from your project directory.

Events and Failed Transactions

To test events and failed transactions we expand our simple storage contract to include an event and two conditions for a failed transaction: advanced_storage.vy

DataChange: event({_setter: indexed(address), _value: int128})

storedData: public(int128)

@public
def __init__(_x: int128):
 self.storedData = _x

@public
def set(_x: int128):
 assert _x >= 0 # No negative values
 assert self.storedData < 100 # Storage will lock when 100 or more is stored
 self.storedData = _x
 log.DataChange(msg.sender, _x)

@public
def reset():
 self.storedData = 0

Next, we take a look at the two fixtures that will allow us to read the event logs and to check for failed transactions.

@pytest.fixture
def assert_tx_failed(tester):
 def assert_tx_failed(function_to_test, exception=TransactionFailed, exc_text=None):
 snapshot_id = tester.take_snapshot()
 with pytest.raises(exception) as excinfo:
 function_to_test()
 tester.revert_to_snapshot(snapshot_id)
 if exc_text:
 assert exc_text in str(excinfo.value)

 return assert_tx_failed

The fixture to assert failed transactions defaults to check for a TransactionFailed exception, but can be used to check for different exceptions too, as shown below.
Also note that the chain gets reverted to the state before the failed transaction.

@pytest.fixture
def get_logs(w3):
 def get_logs(tx_hash, c, event_name):
 tx_receipt = w3.eth.getTransactionReceipt(tx_hash)
 logs = c._classic_contract.events[event_name]().processReceipt(tx_receipt)
 return logs

 return get_logs

This fixture will return a tuple with all the logs for a certain event and transaction. The length of the tuple equals the number of events (of the specified type) logged and should be checked first.

Finally, we create a new file test_advanced_storage.py where we use the new fixtures to test failed transactions and events.

import pytest
from web3.exceptions import (
 ValidationError,
)

INITIAL_VALUE = 4

@pytest.fixture
def adv_storage_contract(w3, get_contract):
 with open('examples/storage/advanced_storage.vy') as f:
 contract_code = f.read()
 # Pass constructor variables directly to the contract
 contract = get_contract(contract_code, INITIAL_VALUE)
 return contract

def test_initial_state(adv_storage_contract):
 # Check if the constructor of the contract is set up properly
 assert adv_storage_contract.storedData() == INITIAL_VALUE

def test_failed_transactions(w3, adv_storage_contract, assert_tx_failed):
 k1 = w3.eth.accounts[1]

 # Try to set the storage to a negative amount
 assert_tx_failed(lambda: adv_storage_contract.set(-10, transact={"from": k1}))

 # Lock the contract by storing more than 100. Then try to change the value
 adv_storage_contract.set(150, transact={"from": k1})
 assert_tx_failed(lambda: adv_storage_contract.set(10, transact={"from": k1}))

 # Reset the contract and try to change the value
 adv_storage_contract.reset(transact={"from": k1})
 adv_storage_contract.set(10, transact={"from": k1})
 assert adv_storage_contract.storedData() == 10

 # Assert a different exception (ValidationError for non matching argument type)
 assert_tx_failed(
 lambda: adv_storage_contract.set("foo", transact={"from": k1}),
 ValidationError
)

 # Assert a different exception that contains specific text
 assert_tx_failed(
 lambda: adv_storage_contract.set(1, 2, transact={"from": k1}),
 ValidationError,
 "invocation failed due to improper number of arguments",
)

def test_events(w3, adv_storage_contract, get_logs):
 k1, k2 = w3.eth.accounts[:2]

 tx1 = adv_storage_contract.set(10, transact={"from": k1})
 tx2 = adv_storage_contract.set(20, transact={"from": k2})
 tx3 = adv_storage_contract.reset(transact={"from": k1})

 # Save DataChange logs from all three transactions
 logs1 = get_logs(tx1, adv_storage_contract, "DataChange")
 logs2 = get_logs(tx2, adv_storage_contract, "DataChange")
 logs3 = get_logs(tx3, adv_storage_contract, "DataChange")

 # Check log contents
 assert len(logs1) == 1
 assert logs1[0].args._value == 10

 assert len(logs2) == 1
 assert logs2[0].args._setter == k2

 assert not logs3 # tx3 does not generate a log

Deploying a Contract

Once you are ready to deploy your contract to a public test net or the main net, you have several options:

	Take the bytecode generated by the vyper compiler and manually deploy it through mist or geth:

vyper yourFileName.vy
returns bytecode

	Take the byte code and ABI and depoly it with your current browser on myetherwallet’s [https://www.myetherwallet.com/] contract menu:

vyper -f abi yourFileName.vy
returns ABI

	Use the remote compiler provided by the Remix IDE [https://remix.ethereum.org] to compile and deploy your contract on your net of choice. Remix also provides a JavaScript VM to test deploy your contract.

Note

While the vyper version of the Remix IDE compiler is updated on a regular basis it might be a bit behind the latest version found in the master branch of the repository. Make sure the byte code matches the output from your local compiler.

Structure of a Contract

Contracts in Vyper are contained within files, with each file being one smart-contract. Files in Vyper are similar to classes in object-oriented languages.
Each file can contain declarations of State Variables and Functions.

State Variables

State variables are values which are permanently stored in contract storage.

storedData: int128

See the Types section for valid state variable types.

Functions

Functions are the executable units of code within a contract.

@public
@payable
def bid(): // Function
 // ...

Function calls can happen internally or externally and have different levels of visibility (see
Decorators) towards other contracts. Functions must be explicitely declared as public or private.

Public Functions

Public functions (decorated with @public) are a part of the contract interface and may be called via transactions or from other contracts. They cannot be called internally.

Public functions in Vyper are equivalent to external functions in Solidity.

Private Functions

Private functions (decorated with @private) are only accessible from other functions within the same contract. They are called via the self variable:

@private
def _times_two(amount: uint256) -> uint256:
 return amount * 2

@public
def calculate(amount: uint256) -> uint256:
 return self._times_two(amount)

Private functions do not have access to msg.sender or msg.value. If you require these values within a private function they must be passed as parameters.

Decorators

The following decorators are available:

	Decorator

	Description

	@public

	Can only be called externally.

	@private

	Can only be called within current contract.

	@constant

	Does not alter contract state.

	@payable

	The contract is open to receive Ether.

	@nonreentrant(<unique_key>)

	Function can only be called once,
both externally and internally. Used to
prevent reentrancy attacks.

The visibility decorators @public or @private are mandatory on function declarations, whilst the other decorators(@constant, @payable, @nonreentrant) are optional.

Default function

A contract can also have a default function, which is executed on a call to the contract if no other functions match the given function identifier (or if none was supplied at all, such as through someone sending it Eth). It is the same construct as fallback functions in Solidity [https://solidity.readthedocs.io/en/latest/contracts.html?highlight=fallback#fallback-function].

This function is always named __default__ and must be annotated with @public. It cannot have arguments and cannot return anything.

If the function is annotated as @payable, this function is executed whenever the contract is sent Ether (without data). This is why the default function cannot accept arguments and return values - it is a design decision of Ethereum to make no differentiation between sending ether to a contract or a user address.

Example:

Payment: event({amount: int128, from: indexed(address)})

@public
@payable
def __default__():
 log.Payment(msg.value, msg.sender)

Considerations

Just as in Solidity, Vyper generates a default function if one isn’t found, in the form of a REVERT call. Note that this still generates an exception [https://github.com/ethereum/wiki/wiki/Subtleties] and thus will not succeed in receiving funds.

Ethereum specifies that the operations will be rolled back if the contract runs out of gas in execution. send calls to the contract come with a free stipend of 2300 gas, which does not leave much room to perform other operations except basic logging. However, if the sender includes a higher gas amount through a call instead of send, then more complex functionality can be run.

It is considered a best practice to ensure your payable default function is compatible with this stipend. The following operations will consume more than 2300 gas:

	Writing to storage

	Creating a contract

	Calling an external function which consumes a large amount of gas

	Sending Ether

Lastly, although the default function receives no arguments, it can still access the msg global, including:

	the address of who is interacting with the contract (msg.sender)

	the amount of ETH sent (msg.value)

	the gas provided (msg.gas).

Events

Events may be logged in specially indexed data structures that allow clients, including light clients, to efficiently search for them.

Payment: event({amount: int128, arg2: indexed(address)})

total_paid: int128

@public
@payable
def pay():
 self.total_paid += msg.value
 log.Payment(msg.value, msg.sender)

Events must be declared before global declarations and function definitions.

NatSpec Metadata

Vyper supports structured documentation for state variables and functions and events.

carrotsEaten: int128
"""
@author Bob Clampett
@notice Number of carrots eaten
@dev Chewing does not count, carrots must pass the throat to be "eaten"
"""

@public
@payable
def doesEat(food: string):
 """
 @author Bob Clampett
 @notice Determine if Bugs will accept `food` to eat
 @dev Compares the entire string and does not rely on a hash
 @param food The name of a food to evaluate (in English)
 @return true if Bugs will eat it, false otherwise
 """

 // ...

Ate: event({food: string})
"""
@author Bob Clampett
@notice Bugs did eat `food`
@dev Chewing does not count, carrots must pass the throat to be "eaten"
@param food The name of a food that was eaten (in English)
"""

Additional information about Ethereum Natural Specification (NatSpec) can be found here [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format].

Contract Interfaces

An interface is a set of function definitions used to enable communication between smart contracts. A contract interface defines all of that contract’s publicly available functions. By importing the interface, your contract now knows how to call these functions in other contracts.

Defining Interfaces and Making External Calls

Interfaces can be added to contracts either through inline definition, or by importing them from a seperate file.

The contract keyword is used to define an inline external interface:

contract FooBar:
 def calculate() -> uint256: constant
 def test1(): modifying

The defined interface can then be use to make external calls, given a contract address:

@public
def test(some_address: address):
 FooBar(some_address).calculate()

The interface name can also be used as a type annotation for storage variables. You then assign an address value to the variable to access that interface. Note that assignment of an address requires the value to be cast using the contract type e.g. FooBar(<address_var>):

foobar_contract: FooBar

@public
def __init__(foobar_address: address):
 self.foobar_contract = FooBar(foobar_address)

@public
def test():
 self.foobar_contract.calculate()

Specifying modifying annotation indicates that the call made to the external contract will be able to alter storage, whereas the constant call will use a STATICCALL ensuring no storage can be altered during execution.

contract FooBar:
 def calculate() -> uint256: constant
 def test1(): modifying

@public
def test(some_address: address):
 FooBar(some_address).calculate() # cannot change storage
 FooBar(some_address).test1() # storage can be altered

Importing Interfaces

Interfaces are imported with import or from ... import statements.

Imported interfaces are written using standard Vyper syntax, with the body of each function replaced by a pass statement:

@public
def test1():
 pass

@public
def calculate() -> uint256:
 pass

You can also import a fully implemented contract and Vyper will automatically convert it to an interface.

Imports via import

With absolute import statements, you must include an alias as a name for the imported package. In the following example, failing to include as Foo will raise a compile error:

import contract.foo as Foo

Imports via from ... import

Using from you can perform both absolute and relative imports. With from import statements you cannot use an alias - the name of the interface will always be that of the file:

from contract import foo

Relative imports are possible by prepending dots to the contract name. A single leading dot indicates a relative import starting with the current package. Two leading dots indicate a relative import from the parent of the current package:

from . import foo
from ..interfaces import baz

Searching For Interface Files

When looking for a file to import Vyper will first search relative to the same folder as the contract being compiled. For absolute imports, it also searches relative to the root path for the project. Vyper checks for the file name with a .vy suffix first, then .json.

When using the command line compiler, the root path defaults to to the current working directory. You can change it with the -p flag:

$ vyper my_project/contracts/my_contract.vy -p my_project

In the above example, the my_project folder is set as the root path. A contract cannot perform a relative import that goes beyond the top-level folder.

Built-in Interfaces

Vyper includes common built-in interfaces such as ERC20 [https://eips.ethereum.org/EIPS/eip-20] and ERC721 [https://eips.ethereum.org/EIPS/eip-721]. These are imported from vyper.interfaces:

from vyper.interfaces import ERC20

implements: ERC20

You can see all the available built-in interfaces in the Vyper GitHub [https://github.com/ethereum/vyper/tree/master/vyper/interfaces] repo.

Implementing an Interface

You can define an interface for your contract with the implements statement:

import an_interface as FooBarInterface

implements: FooBarInterface

This imports the defined interface from the vyper file at an_interface.vy (or an_interface.json if using ABI json interface type) and ensures your current contract implements all the necessary public functions. If any interface functions are not included in the contract, it will fail to compile. This is especially useful when developing contracts around well-defined standards such as ERC20.

Extracting Interfaces

Vyper has a built-in format option to allow you to make your own vyper interfaces easily.

$ vyper -f interface examples/voting/ballot.vy

Functions

@constant
@public
def delegated(addr: address) -> bool:
 pass

...

If you want to do an external call to another contract, vyper provides an external contract extract utility as well.

$ vyper -f external_interface examples/voting/ballot.vy

External Contracts
contract Ballot:
 def delegated(addr: address) -> bool: constant
 def directlyVoted(addr: address) -> bool: constant
 def giveRightToVote(voter: address): modifying
 def forwardWeight(delegate_with_weight_to_forward: address): modifying
 # ...

The output can then easily be copy-pasted to be consumed.

Vyper by Example

Simple Open Auction

As an introductory example of a smart contract written in Vyper, we will begin
with a simple open auction contract. As we dive into the code,
it is important to remember that all Vyper syntax is valid Python3 syntax,
however not all Python3 functionality is available in Vyper.

In this contract, we will be looking at a simple open auction contract where
participants can submit bids during a limited time period. When the auction
period ends, a predetermined beneficiary will receive the amount of the highest
bid.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

	# Open Auction

Auction params
Beneficiary receives money from the highest bidder
beneficiary: public(address)
auctionStart: public(timestamp)
auctionEnd: public(timestamp)

Current state of auction
highestBidder: public(address)
highestBid: public(wei_value)

Set to true at the end, disallows any change
ended: public(bool)

Keep track of refunded bids so we can follow the withdraw pattern
pendingReturns: public(map(address, wei_value))

Create a simple auction with `_bidding_time`
seconds bidding time on behalf of the
beneficiary address `_beneficiary`.
@public
def __init__(_beneficiary: address, _bidding_time: timedelta):
 self.beneficiary = _beneficiary
 self.auctionStart = block.timestamp
 self.auctionEnd = self.auctionStart + _bidding_time

Bid on the auction with the value sent
together with this transaction.
The value will only be refunded if the
auction is not won.
@public
@payable
def bid():
 # Check if bidding period is over.
 assert block.timestamp < self.auctionEnd
 # Check if bid is high enough
 assert msg.value > self.highestBid
 # Track the refund for the previous high bidder
 self.pendingReturns[self.highestBidder] += self.highestBid
 # Track new high bid
 self.highestBidder = msg.sender
 self.highestBid = msg.value

Withdraw a previously refunded bid. The withdraw pattern is
used here to avoid a security issue. If refunds were directly
sent as part of bid(), a malicious bidding contract could block
those refunds and thus block new higher bids from coming in.
@public
def withdraw():
 pending_amount: wei_value = self.pendingReturns[msg.sender]
 self.pendingReturns[msg.sender] = 0
 send(msg.sender, pending_amount)

End the auction and send the highest bid
to the beneficiary.
@public
def endAuction():
 # It is a good guideline to structure functions that interact
 # with other contracts (i.e. they call functions or send Ether)
 # into three phases:
 # 1. checking conditions
 # 2. performing actions (potentially changing conditions)
 # 3. interacting with other contracts
 # If these phases are mixed up, the other contract could call
 # back into the current contract and modify the state or cause
 # effects (Ether payout) to be performed multiple times.
 # If functions called internally include interaction with external
 # contracts, they also have to be considered interaction with
 # external contracts.

 # 1. Conditions
 # Check if auction endtime has been reached
 assert block.timestamp >= self.auctionEnd
 # Check if this function has already been called
 assert not self.ended

 # 2. Effects
 self.ended = True

 # 3. Interaction
 send(self.beneficiary, self.highestBid)

As you can see, this example only has a constructor, two methods to call, and
a few variables to manage the contract state. Believe it or not, this is all we
need for a basic implementation of an auction smart contract.

Let’s get started!

Auction params
Beneficiary receives money from the highest bidder
beneficiary: public(address)
auctionStart: public(timestamp)
auctionEnd: public(timestamp)

Current state of auction
highestBidder: public(address)
highestBid: public(wei_value)

Set to true at the end, disallows any change
ended: public(bool)

We begin by declaring a few variables to keep track of our contract state.
We initialize a global variable beneficiary by calling public on the
datatype address. The beneficiary will be the receiver of money from
the highest bidder. We also initialize the variables auctionStart and
auctionEnd with the datatype timestamp to manage the open auction
period and highestBid with datatype wei_value, the smallest
denomination of ether, to manage auction state. The variable ended is a
boolean to determine whether the auction is officially over.

You may notice all of the variables being passed into the public
function. By declaring the variable public, the variable is
callable by external contracts. Initializing the variables without the public
function defaults to a private declaration and thus only accessible to methods
within the same contract. The public function additionally creates a
‘getter’ function for the variable, accessible through an external call such as
contract.beneficiary().

Now, the constructor.

@public
def __init__(_beneficiary: address, _bidding_time: timedelta):
 self.beneficiary = _beneficiary
 self.auctionStart = block.timestamp
 self.auctionEnd = self.auctionStart + _bidding_time

The contract is initialized with two arguments: _beneficiary of type
address and _bidding_time with type timedelta, the time difference
between the start and end of the auction. We then store these two pieces of
information into the contract variables self.beneficiary and
self.auctionEnd. Notice that we have access to the current time by
calling block.timestamp. block is an object available within any Vyper
contract and provides information about the block at the time of calling.
Similar to block, another important object available to us within the
contract is msg, which provides information on the method caller as we will
soon see.

With initial setup out of the way, lets look at how our users can make bids.

@public
@payable
def bid():
 # Check if bidding period is over.
 assert block.timestamp < self.auctionEnd
 # Check if bid is high enough
 assert msg.value > self.highestBid
 # Track the refund for the previous high bidder
 self.pendingReturns[self.highestBidder] += self.highestBid
 # Track new high bid
 self.highestBidder = msg.sender
 self.highestBid = msg.value

The @payable decorator will allow a user to send some ether to the
contract in order to call the decorated method. In this case, a user wanting
to make a bid would call the bid() method while sending an amount equal
to their desired bid (not including gas fees). When calling any method within a
contract, we are provided with a built-in variable msg and we can access
the public address of any method caller with msg.sender. Similarly, the
amount of ether a user sends can be accessed by calling msg.value.

Note

msg.sender and msg.value can only be accessed from public
functions. If you require these values within a private function they must be passed as parameters.

Here, we first check whether the current time is before the auction’s end time
using the assert function which takes any boolean statement. We also check
to see if the new bid is greater than the highest bid. If the two assert
statements pass, we can safely continue to the next lines; otherwise, the
bid() method will throw an error and revert the transaction. If the two
assert statements and the check that the previous bid is not equal to zero pass,
we can safely conclude that we have a valid new highest bid. We will send back
the previous highestBid to the previous highestBidder and set our new
highestBid and highestBidder.

@public
def endAuction():
 # It is a good guideline to structure functions that interact
 # with other contracts (i.e. they call functions or send Ether)
 # into three phases:
 # 1. checking conditions
 # 2. performing actions (potentially changing conditions)
 # 3. interacting with other contracts
 # If these phases are mixed up, the other contract could call
 # back into the current contract and modify the state or cause
 # effects (Ether payout) to be performed multiple times.
 # If functions called internally include interaction with external
 # contracts, they also have to be considered interaction with
 # external contracts.

 # 1. Conditions
 # Check if auction endtime has been reached
 assert block.timestamp >= self.auctionEnd
 # Check if this function has already been called
 assert not self.ended

 # 2. Effects
 self.ended = True

 # 3. Interaction
 send(self.beneficiary, self.highestBid)

With the endAuction() method, we check whether our current time is past
the auctionEnd time we set upon initialization of the contract. We also
check that self.ended had not previously been set to True. We do this
to prevent any calls to the method if the auction had already ended,
which could potentially be malicious if the check had not been made.
We then officially end the auction by setting self.ended to True
and sending the highest bid amount to the beneficiary.

And there you have it - an open auction contract. Of course, this is a
simplified example with barebones functionality and can be improved.
Hopefully, this has provided some insight into the possibilities of Vyper.
As we move on to exploring more complex examples, we will encounter more
design patterns and features of the Vyper language.

And of course, no smart contract tutorial is complete without a note on
security.

Note

It’s always important to keep security in mind when designing a smart
contract. As any application becomes more complex, the greater the potential for
introducing new risks. Thus, it’s always good practice to keep contracts as
readable and simple as possible.

Whenever you’re ready, let’s turn it up a notch in the next example.

Blind Auction

Before we dive into our other examples, let’s briefly explore another type of
auction that you can build with Vyper. Similar to its counterpart [https://solidity.readthedocs.io/en/v0.5.0/solidity-by-example.html#id2] written in
Solidity, this blind auction allows for an auction where there is no time pressure towards the end of the bidding period.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

	# Blind Auction # Adapted to Vyper from [Solidity by Example](https://github.com/ethereum/solidity/blob/develop/docs/solidity-by-example.rst#blind-auction-1)

struct Bid:
 blindedBid: bytes32
 deposit: wei_value

Note: because Vyper does not allow for dynamic arrays, we have limited the
number of bids that can be placed by one address to 128 in this example
MAX_BIDS: constant(int128) = 128

Event for logging that auction has ended
AuctionEnded: event({_highestBidder: address, _highestBid: wei_value})

Auction parameters
beneficiary: public(address)
biddingEnd: public(timestamp)
revealEnd: public(timestamp)

Set to true at the end of auction, disallowing any new bids
ended: public(bool)

Final auction state
highestBid: public(wei_value)
highestBidder: public(address)

State of the bids
bids: map(address, Bid[128])
bidCounts: map(address, int128)

Allowed withdrawals of previous bids
pendingReturns: map(address, wei_value)

Create a blinded auction with `_biddingTime` seconds bidding time and
`_revealTime` seconds reveal time on behalf of the beneficiary address
`_beneficiary`.
@public
def __init__(_beneficiary: address, _biddingTime: timedelta, _revealTime: timedelta):
 self.beneficiary = _beneficiary
 self.biddingEnd = block.timestamp + _biddingTime
 self.revealEnd = self.biddingEnd + _revealTime

Place a blinded bid with:
#
_blindedBid = keccak256(concat(
convert(value, bytes32),
convert(fake, bytes32),
secret)
)
#
The sent ether is only refunded if the bid is correctly revealed in the
revealing phase. The bid is valid if the ether sent together with the bid is
at least "value" and "fake" is not true. Setting "fake" to true and sending
not the exact amount are ways to hide the real bid but still make the
required deposit. The same address can place multiple bids.
@public
@payable
def bid(_blindedBid: bytes32):
 # Check if bidding period is still open
 assert block.timestamp < self.biddingEnd

 # Check that payer hasn't already placed maximum number of bids
 numBids: int128 = self.bidCounts[msg.sender]
 assert numBids < MAX_BIDS

 # Add bid to mapping of all bids
 self.bids[msg.sender][numBids] = Bid({
 blindedBid: _blindedBid,
 deposit: msg.value
 })
 self.bidCounts[msg.sender] += 1

Returns a boolean value, `True` if bid placed successfully, `False` otherwise.
@private
def placeBid(bidder: address, value: wei_value) -> bool:
 # If bid is less than highest bid, bid fails
 if (value <= self.highestBid):
 return False

 # Refund the previously highest bidder
 if (self.highestBidder != ZERO_ADDRESS):
 self.pendingReturns[self.highestBidder] += self.highestBid

 # Place bid successfully and update auction state
 self.highestBid = value
 self.highestBidder = bidder

 return True

Reveal your blinded bids. You will get a refund for all correctly blinded
invalid bids and for all bids except for the totally highest.
@public
def reveal(_numBids: int128, _values: wei_value[128], _fakes: bool[128], _secrets: bytes32[128]):
 # Check that bidding period is over
 assert block.timestamp > self.biddingEnd

 # Check that reveal end has not passed
 assert block.timestamp < self.revealEnd

 # Check that number of bids being revealed matches log for sender
 assert _numBids == self.bidCounts[msg.sender]

 # Calculate refund for sender
 refund: wei_value
 for i in range(MAX_BIDS):
 # Note that loop may break sooner than 128 iterations if i >= _numBids
 if (i >= _numBids):
 break

 # Get bid to check
 bidToCheck: Bid = (self.bids[msg.sender])[i]

 # Check against encoded packet
 value: wei_value = _values[i]
 fake: bool = _fakes[i]
 secret: bytes32 = _secrets[i]
 blindedBid: bytes32 = keccak256(concat(
 convert(value, bytes32),
 convert(fake, bytes32),
 secret
))

 # Bid was not actually revealed
 # Do not refund deposit
 if (blindedBid != bidToCheck.blindedBid):
 assert 1 == 0
 continue

 # Add deposit to refund if bid was indeed revealed
 refund += bidToCheck.deposit
 if (not fake and bidToCheck.deposit >= value):
 if (self.placeBid(msg.sender, value)):
 refund -= value

 # Make it impossible for the sender to re-claim the same deposit
 zeroBytes32: bytes32
 bidToCheck.blindedBid = zeroBytes32

 # Send refund if non-zero
 if (refund != 0):
 send(msg.sender, refund)

Withdraw a bid that was overbid.
@public
def withdraw():
 # Check that there is an allowed pending return.
 pendingAmount: wei_value = self.pendingReturns[msg.sender]
 if (pendingAmount > 0):
 # If so, set pending returns to zero to prevent recipient from calling
 # this function again as part of the receiving call before `transfer`
 # returns (see the remark above about conditions -> effects ->
 # interaction).
 self.pendingReturns[msg.sender] = 0

 # Then send return
 send(msg.sender, pendingAmount)

End the auction and send the highest bid to the beneficiary.
@public
def auctionEnd():
 # Check that reveal end has passed
 assert block.timestamp > self.revealEnd

 # Check that auction has not already been marked as ended
 assert not self.ended

 # Log auction ending and set flag
 log.AuctionEnded(self.highestBidder, self.highestBid)
 self.ended = True

 # Transfer funds to beneficiary
 send(self.beneficiary, self.highestBid)

While this blind auction is almost functionally identical to the blind auction implemented in Solidity, the differences in their implementations help illustrate the differences between Solidity and Vyper.

Final auction state
highestBid: public(wei_value)
highestBidder: public(address)

One key difference is that, because Vyper does not allow for dynamic arrays, we
have limited the number of bids that can be placed by one address to 128 in this
example. Bidders who want to make more than this maximum number of bids would
need to do so from multiple addresses.

Safe Remote Purchases

In this example, we have an escrow contract implementing a system for a trustless
transaction between a buyer and a seller. In this system, a seller posts an item
for sale and makes a deposit to the contract of twice the item’s value. At
this moment, the contract has a balance of 2 * value. The seller can reclaim
the deposit and close the sale as long as a buyer has not yet made a purchase.
If a buyer is interested in making a purchase, they would make a payment and
submit an equal amount for deposit (totaling 2 * value) into the contract
and locking the contract from further modification. At this moment, the contract
has a balance of 4 * value and the seller would send the item to buyer. Upon
the buyer’s receipt of the item, the buyer will mark the item as received in the
contract, thereby returning the buyer’s deposit (not payment), releasing the
remaining funds to the seller, and completing the transaction.

There are certainly others ways of designing a secure escrow system with less
overhead for both the buyer and seller, but for the purpose of this example,
we want to explore one way how an escrow system can be implemented trustlessly.

Let’s go!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	# Safe Remote Purchase
Originally from
https://github.com/ethereum/solidity/blob/develop/docs/solidity-by-example.rst
Ported to vyper and optimized.

Rundown of the transaction:
1. Seller posts item for sale and posts safety deposit of double the item value.
Balance is 2*value.
(1.1. Seller can reclaim deposit and close the sale as long as nothing was purchased.)
2. Buyer purchases item (value) plus posts an additional safety deposit (Item value).
Balance is 4*value.
3. Seller ships item.
4. Buyer confirms receiving the item. Buyer's deposit (value) is returned.
Seller's deposit (2*value) + items value is returned. Balance is 0.

value: public(wei_value) #Value of the item
seller: public(address)
buyer: public(address)
unlocked: public(bool)
ended: public(bool)

@public
@payable
def __init__():
 assert (msg.value % 2) == 0
 self.value = msg.value / 2 # The seller initializes the contract by
 # posting a safety deposit of 2*value of the item up for sale.
 self.seller = msg.sender
 self.unlocked = True

@public
def abort():
 assert self.unlocked #Is the contract still refundable?
 assert msg.sender == self.seller # Only the seller can refund
 # his deposit before any buyer purchases the item.
 selfdestruct(self.seller) # Refunds the seller and deletes the contract.

@public
@payable
def purchase():
 assert self.unlocked # Is the contract still open (is the item still up
 # for sale)?
 assert msg.value == (2 * self.value) # Is the deposit the correct value?
 self.buyer = msg.sender
 self.unlocked = False

@public
def received():
 # 1. Conditions
 assert not self.unlocked # Is the item already purchased and pending
 # confirmation from the buyer?
 assert msg.sender == self.buyer
 assert not self.ended

 # 2. Effects
 self.ended = True

 # 3. Interaction
 send(self.buyer, self.value) # Return the buyer's deposit (=value) to the buyer.
 selfdestruct(self.seller) # Return the seller's deposit (=2*value) and the
 # purchase price (=value) to the seller.

This is also a moderately short contract, however a little more complex in
logic. Let’s break down this contract bit by bit.

value: public(wei_value) #Value of the item
seller: public(address)
buyer: public(address)
unlocked: public(bool)

Like the other contracts, we begin by declaring our global variables public with
their respective data types. Remember that the public function allows the
variables to be readable by an external caller, but not writeable.

@public
@payable
def __init__():
 assert (msg.value % 2) == 0
 self.value = msg.value / 2 # The seller initializes the contract by
 # posting a safety deposit of 2*value of the item up for sale.
 self.seller = msg.sender
 self.unlocked = True

With a @payable decorator on the constructor, the contract creator will be
required to make an initial deposit equal to twice the item’s value to
initialize the contract, which will be later returned. This is in addition to
the gas fees needed to deploy the contract on the blockchain, which is not
returned. We assert that the deposit is divisible by 2 to ensure that the
seller deposited a valid amount. The constructor stores the item’s value
in the contract variable self.value and saves the contract creator into
self.seller. The contract variable self.unlocked is initialized to
True.

@public
def abort():
 assert self.unlocked #Is the contract still refundable?
 assert msg.sender == self.seller # Only the seller can refund
 # his deposit before any buyer purchases the item.
 selfdestruct(self.seller) # Refunds the seller and deletes the contract.

The abort() method is a method only callable by the seller and while the
contract is still unlocked—meaning it is callable only prior to any buyer
making a purchase. As we will see in the purchase() method that when
a buyer calls the purchase() method and sends a valid amount to the contract,
the contract will be locked and the seller will no longer be able to call
abort().

When the seller calls abort() and if the assert statements pass, the
contract will call the selfdestruct() function and refunds the seller and
subsequently destroys the contract.

@public
@payable
def purchase():
 assert self.unlocked # Is the contract still open (is the item still up
 # for sale)?
 assert msg.value == (2 * self.value) # Is the deposit the correct value?
 self.buyer = msg.sender
 self.unlocked = False

Like the constructor, the purchase() method has a @payable decorator,
meaning it can be called with a payment. For the buyer to make a valid
purchase, we must first assert that the contract’s unlocked property is
True and that the amount sent is equal to twice the item’s value. We then
set the buyer to the msg.sender and lock the contract. At this point, the
contract has a balance equal to 4 times the item value and the seller must
send the item to the buyer.

@public
def received():
 # 1. Conditions
 assert not self.unlocked # Is the item already purchased and pending
 # confirmation from the buyer?
 assert msg.sender == self.buyer
 assert not self.ended

 # 2. Effects
 self.ended = True

 # 3. Interaction
 send(self.buyer, self.value) # Return the buyer's deposit (=value) to the buyer.
 selfdestruct(self.seller) # Return the seller's deposit (=2*value) and the

Finally, upon the buyer’s receipt of the item, the buyer can confirm their
receipt by calling the received() method to distribute the funds as
intended—where the seller receives 3/4 of the contract balance and the buyer
receives 1/4.

By calling received(), we begin by checking that the contract is indeed
locked, ensuring that a buyer had previously paid. We also ensure that this
method is only callable by the buyer. If these two assert statements pass,
we refund the buyer their initial deposit and send the seller the remaining
funds. The contract is finally destroyed and the transaction is complete.

Whenever we’re ready, let’s move on to the next example.

Crowdfund

Now, let’s explore a straightforward example for a crowdfunding contract where
prospective participants can contribute funds to a campaign. If the total
contribution to the campaign reaches or surpasses a predetermined funding goal,
the funds will be sent to the beneficiary at the end of the campaign deadline.
Participants will be refunded their respective contributions if the total
funding does not reach its target goal.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	# Setup private variables (only callable from within the contract)

struct Funder :
 sender: address
 value: wei_value

funders: map(int128, Funder)
nextFunderIndex: int128
beneficiary: address
deadline: public(timestamp)
goal: public(wei_value)
refundIndex: int128
timelimit: public(timedelta)

Setup global variables
@public
def __init__(_beneficiary: address, _goal: wei_value, _timelimit: timedelta):
 self.beneficiary = _beneficiary
 self.deadline = block.timestamp + _timelimit
 self.timelimit = _timelimit
 self.goal = _goal

Participate in this crowdfunding campaign
@public
@payable
def participate():
 assert block.timestamp < self.deadline, "deadline not met (yet)"

 nfi: int128 = self.nextFunderIndex

 self.funders[nfi] = Funder({sender: msg.sender, value: msg.value})
 self.nextFunderIndex = nfi + 1

Enough money was raised! Send funds to the beneficiary
@public
def finalize():
 assert block.timestamp >= self.deadline, "deadline not met (yet)"
 assert self.balance >= self.goal, "invalid balance"

 selfdestruct(self.beneficiary)

Not enough money was raised! Refund everyone (max 30 people at a time
to avoid gas limit issues)
@public
def refund():
 assert block.timestamp >= self.deadline and self.balance < self.goal

 ind: int128 = self.refundIndex

 for i in range(ind, ind + 30):
 if i >= self.nextFunderIndex:
 self.refundIndex = self.nextFunderIndex
 return

 send(self.funders[i].sender, self.funders[i].value)
 clear(self.funders[i])

 self.refundIndex = ind + 30

Most of this code should be relatively straightforward after going through our
previous examples. Let’s dive right in.

Setup private variables (only callable from within the contract)

struct Funder :
 sender: address
 value: wei_value

funders: map(int128, Funder)
nextFunderIndex: int128

Like other examples, we begin by initiating our variables - except this time,
we’re not calling them with the public function. Variables initiated this
way are, by default, private.

Note

Unlike the existence of the function public(), there is no equivalent
private() function. Variables simply default to private if initiated
without the public() function.

The funders variable is initiated as a mapping where the key is a number,
and the value is a struct representing the contribution of each participant.
This struct contains each participant’s public address and their respective
value contributed to the fund. The key corresponding to each struct in the
mapping will be represented by the variable nextFunderIndex which is
incremented with each additional contributing participant. Variables initialized
with the int128 type without an explicit value, such as nextFunderIndex,
defaults to 0. The beneficiary will be the final receiver of the funds
once the crowdfunding period is over—as determined by the deadline and
timelimit variables. The goal variable is the target total contribution
of all participants. refundIndex is a variable for bookkeeping purposes in
order to avoid gas limit issues in the scenario of a refund.

Our constructor function takes 3 arguments: the beneficiary’s address, the goal
in wei value, and the difference in time from start to finish of the
crowdfunding. We initialize the arguments as contract variables with their
corresponding names. Additionally, a self.deadline is initialized to set
a definitive end time for the crowdfunding period.

Now lets take a look at how a person can participate in the crowdfund.

Once again, we see the @payable decorator on a method, which allows a
person to send some ether along with a call to the method. In this case,
the participate() method accesses the sender’s address with msg.sender
and the corresponding amount sent with msg.value. This information is stored
into a struct and then saved into the funders mapping with
self.nextFunderIndex as the key. As more participants are added to the
mapping, self.nextFunderIndex increments appropriately to properly index
each participant.

The finalize() method is used to complete the crowdfunding process. However,
to complete the crowdfunding, the method first checks to see if the crowdfunding
period is over and that the balance has reached/passed its set goal. If those
two conditions pass, the contract calls the selfdestruct() function and
sends the collected funds to the beneficiary.

Note

Notice that we have access to the total amount sent to the contract by
calling self.balance, a variable we never explicitly set. Similar to msg
and block, self.balance is a built-in variable that’s available in all
Vyper contracts.

We can finalize the campaign if all goes well, but what happens if the
crowdfunding campaign isn’t successful? We’re going to need a way to refund
all the participants.

In the refund() method, we first check that the crowdfunding period is
indeed over and that the total collected balance is less than the goal with
the assert statement . If those two conditions pass, we then loop through
every participant and call send() to send each participant their respective
contribution. For the sake of gas limits, we group the number of contributors
in batches of 30 and refund them one at a time. Unfortunately, if there’s a
large number of participants, multiple calls to refund() may be
necessary.

Voting

In this contract, we will implement a system for participants to vote on a list
of proposals. The chairperson of the contract will be able to give each
participant the right to vote, and each participant may choose to vote, or
delegate their vote to another voter. Finally, a winning proposal will be
determined upon calling the winningProposals() method, which iterates through
all the proposals and returns the one with the greatest number of votes.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

	# Voting with delegation.

Information about voters
struct Voter:
 # weight is accumulated by delegation
 weight: int128
 # if true, that person already voted (which includes voting by delegating)
 voted: bool
 # person delegated to
 delegate: address
 # index of the voted proposal, which is not meaningful unless `voted` is True.
 vote: int128

Users can create proposals
struct Proposal:
 # short name (up to 32 bytes)
 name: bytes32
 # number of accumulated votes
 voteCount: int128

voters: public(map(address, Voter))
proposals: public(map(int128, Proposal))
voterCount: public(int128)
chairperson: public(address)
int128Proposals: public(int128)

@private
@constant
def _delegated(addr: address) -> bool:
 return self.voters[addr].delegate != ZERO_ADDRESS

@public
@constant
def delegated(addr: address) -> bool:
 return self._delegated(addr)

@private
@constant
def _directlyVoted(addr: address) -> bool:
 return self.voters[addr].voted and (self.voters[addr].delegate == ZERO_ADDRESS)

@public
@constant
def directlyVoted(addr: address) -> bool:
 return self._directlyVoted(addr)

Setup global variables
@public
def __init__(_proposalNames: bytes32[2]):
 self.chairperson = msg.sender
 self.voterCount = 0
 for i in range(2):
 self.proposals[i] = Proposal({
 name: _proposalNames[i],
 voteCount: 0
 })
 self.int128Proposals += 1

Give a `voter` the right to vote on this ballot.
This may only be called by the `chairperson`.
@public
def giveRightToVote(voter: address):
 # Throws if the sender is not the chairperson.
 assert msg.sender == self.chairperson
 # Throws if the voter has already voted.
 assert not self.voters[voter].voted
 # Throws if the voter's voting weight isn't 0.
 assert self.voters[voter].weight == 0
 self.voters[voter].weight = 1
 self.voterCount += 1

Used by `delegate` below, callable externally via `forwardWeight`
@private
def _forwardWeight(delegate_with_weight_to_forward: address):
 assert self._delegated(delegate_with_weight_to_forward)
 # Throw if there is nothing to do:
 assert self.voters[delegate_with_weight_to_forward].weight > 0

 target: address = self.voters[delegate_with_weight_to_forward].delegate
 for i in range(4):
 if self._delegated(target):
 target = self.voters[target].delegate
 # The following effectively detects cycles of length <= 5,
 # in which the delegation is given back to the delegator.
 # This could be done for any int128ber of loops,
 # or even infinitely with a while loop.
 # However, cycles aren't actually problematic for correctness;
 # they just result in spoiled votes.
 # So, in the production version, this should instead be
 # the responsibility of the contract's client, and this
 # check should be removed.
 assert target != delegate_with_weight_to_forward
 else:
 # Weight will be moved to someone who directly voted or
 # hasn't voted.
 break

 weight_to_forward: int128 = self.voters[delegate_with_weight_to_forward].weight
 self.voters[delegate_with_weight_to_forward].weight = 0
 self.voters[target].weight += weight_to_forward

 if self._directlyVoted(target):
 self.proposals[self.voters[target].vote].voteCount += weight_to_forward
 self.voters[target].weight = 0

 # To reiterate: if target is also a delegate, this function will need
 # to be called again, similarly to as above.

Public function to call _forwardWeight
@public
def forwardWeight(delegate_with_weight_to_forward: address):
 self._forwardWeight(delegate_with_weight_to_forward)

Delegate your vote to the voter `to`.
@public
def delegate(to: address):
 # Throws if the sender has already voted
 assert not self.voters[msg.sender].voted
 # Throws if the sender tries to delegate their vote to themselves or to
 # the default address value of 0x00
 # (the latter might not be problematic, but I don't want to think about it).
 assert to != msg.sender
 assert to != ZERO_ADDRESS

 self.voters[msg.sender].voted = True
 self.voters[msg.sender].delegate = to

 # This call will throw if and only if this delegation would cause a loop
 # of length <= 5 that ends up delegating back to the delegator.
 self._forwardWeight(msg.sender)

Give your vote (including votes delegated to you)
to proposal `proposals[proposal].name`.
@public
def vote(proposal: int128):
 # can't vote twice
 assert not self.voters[msg.sender].voted
 # can only vote on legitimate proposals
 assert proposal < self.int128Proposals

 self.voters[msg.sender].vote = proposal
 self.voters[msg.sender].voted = True

 # transfer msg.sender's weight to proposal
 self.proposals[proposal].voteCount += self.voters[msg.sender].weight
 self.voters[msg.sender].weight = 0

Computes the winning proposal taking all
previous votes into account.
@private
@constant
def _winningProposal() -> int128:
 winning_vote_count: int128 = 0
 winning_proposal: int128 = 0
 for i in range(2):
 if self.proposals[i].voteCount > winning_vote_count:
 winning_vote_count = self.proposals[i].voteCount
 winning_proposal = i
 return winning_proposal

@public
@constant
def winningProposal() -> int128:
 return self._winningProposal()

Calls winningProposal() function to get the index
of the winner contained in the proposals array and then
returns the name of the winner
@public
@constant
def winnerName() -> bytes32:
 return self.proposals[self._winningProposal()].name

As we can see, this is the contract of moderate length which we will dissect
section by section. Let’s begin!

Information about voters
struct Voter:
 # weight is accumulated by delegation
 weight: int128
 # if true, that person already voted (which includes voting by delegating)
 voted: bool
 # person delegated to
 delegate: address
 # index of the voted proposal, which is not meaningful unless `voted` is True.
 vote: int128

Users can create proposals
struct Proposal:
 # short name (up to 32 bytes)
 name: bytes32
 # number of accumulated votes
 voteCount: int128

voters: public(map(address, Voter))
proposals: public(map(int128, Proposal))
voterCount: public(int128)
chairperson: public(address)
int128Proposals: public(int128)

The variable voters is initialized as a mapping where the key is
the voter’s public address and the value is a struct describing the
voter’s properties: weight, voted, delegate, and vote, along
with their respective data types.

Similarly, the proposals variable is initialized as a public mapping
with int128 as the key’s datatype and a struct to represent each proposal
with the properties name and vote_count. Like our last example, we can
access any value by key’ing into the mapping with a number just as one would
with an index in an array.

Then, voterCount and chairperson are initialized as public with
their respective datatypes.

Let’s move onto the constructor.

Note

msg.sender and msg.value can only be accessed from public
functions. If you require these values within a private function they must be
passed as parameters.

In the constructor, we hard-coded the contract to accept an
array argument of exactly two proposal names of type bytes32 for the contracts
initialization. Because upon initialization, the __init__() method is called
by the contract creator, we have access to the contract creator’s address with
msg.sender and store it in the contract variable self.chairperson. We
also initialize the contract variable self.voter_count to zero to initially
represent the number of votes allowed. This value will be incremented as each
participant in the contract is given the right to vote by the method
giveRightToVote(), which we will explore next. We loop through the two
proposals from the argument and insert them into proposals mapping with
their respective index in the original array as its key.

Now that the initial setup is done, lets take a look at the functionality.

Note

Throughout this contract, we use a pattern where @public functions return data from @private functions that have the same name prepended with an underscore. This is because Vyper does not allow calls between public functions within the same contract. The private function handles the logic and allows internal access, while the public function acts as a getter to allow external viewing.

We need a way to control who has the ability to vote. The method
giveRightToVote() is a method callable by only the chairperson by taking
a voter address and granting it the right to vote by incrementing the voter’s
weight property. We sequentially check for 3 conditions using assert.
The assert not function will check for falsy boolean values -
in this case, we want to know that the voter has not already voted. To represent
voting power, we will set their weight to 1 and we will keep track of the
total number of voters by incrementing voterCount.

In the method delegate, firstly, we check to see that msg.sender has not
already voted and secondly, that the target delegate and the msg.sender are
not the same. Voters shouldn’t be able to delegate votes to themselves. We,
then, loop through all the voters to determine whether the person delegate to
had further delegated their vote to someone else in order to follow the
chain of delegation. We then mark the msg.sender as having voted if they
delegated their vote. We increment the proposal’s voterCount directly if
the delegate had already voted or increase the delegate’s vote weight
if the delegate has not yet voted.

Now, let’s take a look at the logic inside the vote() method, which is
surprisingly simple. The method takes the key of the proposal in the proposals
mapping as an argument, check that the method caller had not already voted,
sets the voter’s vote property to the proposal key, and increments the
proposals voteCount by the voter’s weight.

With all the basic functionality complete, what’s left is simply returning
the winning proposal. To do this, we have two methods: winningProposal(),
which returns the key of the proposal, and winnerName(), returning the
name of the proposal. Notice the @constant decorator on these two methods.
We do this because the two methods only read the blockchain state and do not
modify it. Remember, reading the blockchain state is free; modifying the state
costs gas. By having the @constant decorator, we let the EVM know that this
is a read-only function and we benefit by saving gas fees.

Computes the winning proposal taking all
previous votes into account.
@private
@constant
def _winningProposal() -> int128:
 winning_vote_count: int128 = 0
 winning_proposal: int128 = 0
 for i in range(2):
 if self.proposals[i].voteCount > winning_vote_count:
 winning_vote_count = self.proposals[i].voteCount
 winning_proposal = i
 return winning_proposal

@public
@constant
def winningProposal() -> int128:
 return self._winningProposal()

The _winningProposal() method returns the key of proposal in the proposals
mapping. We will keep track of greatest number of votes and the winning
proposal with the variables winningVoteCount and winningProposal,
respectively by looping through all the proposals.

winningProposal() is a public function allowing external access to _winningProposal().

And finally, the winnerName() method returns the name of the proposal by
key’ing into the proposals mapping with the return result of the
winningProposal() method.

And there you have it - a voting contract. Currently, many transactions
are needed to assign the rights to vote to all participants. As an exercise,
can we try to optimize this?

Now that we’re familiar with basic contracts. Let’s step up the difficulty.

Company Stock

This contract is just a tad bit more thorough than the ones we’ve previously
encountered. In this example, we are going to look at a comprehensive contract
that manages the holdings of all shares of a company. The contract allows for
a person to buy, sell and transfer shares of a company as well as allowing for
the company to pay a person in ether. The company, upon initialization of the
contract, holds all shares of the company at first but can sell them all.

Let’s get started.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

	units: {
 currency_value: "Currency Value"
}

Financial events the contract logs
Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256(currency_value)})
Buy: event({_buyer: indexed(address), _buy_order: uint256(currency_value)})
Sell: event({_seller: indexed(address), _sell_order: uint256(currency_value)})
Pay: event({_vendor: indexed(address), _amount: wei_value})

Initiate the variables for the company and it's own shares.
company: public(address)
totalShares: public(uint256(currency_value))
price: public(uint256 (wei / currency_value))

Store a ledger of stockholder holdings.
holdings: map(address, uint256(currency_value))

Set up the company.
@public
def __init__(_company: address, _total_shares: uint256(currency_value),
 initial_price: uint256(wei / currency_value)):
 assert _total_shares > 0
 assert initial_price > 0

 self.company = _company
 self.totalShares = _total_shares
 self.price = initial_price

 # The company holds all the shares at first, but can sell them all.
 self.holdings[self.company] = _total_shares

Find out how much stock the company holds
@private
@constant
def _stockAvailable() -> uint256(currency_value):
 return self.holdings[self.company]

Public function to allow external access to _stockAvailable
@public
@constant
def stockAvailable() -> uint256(currency_value):
 return self._stockAvailable()

Give some value to the company and get stock in return.
@public
@payable
def buyStock():
 # Note: full amount is given to company (no fractional shares),
 # so be sure to send exact amount to buy shares
 buy_order: uint256(currency_value) = msg.value / self.price # rounds down

 # Check that there are enough shares to buy.
 assert self._stockAvailable() >= buy_order

 # Take the shares off the market and give them to the stockholder.
 self.holdings[self.company] -= buy_order
 self.holdings[msg.sender] += buy_order

 # Log the buy event.
 log.Buy(msg.sender, buy_order)

Find out how much stock any address (that's owned by someone) has.
@private
@constant
def _getHolding(_stockholder: address) -> uint256(currency_value):
 return self.holdings[_stockholder]

Public function to allow external access to _getHolding
@public
@constant
def getHolding(_stockholder: address) -> uint256(currency_value):
 return self._getHolding(_stockholder)

Return the amount the company has on hand in cash.
@public
@constant
def cash() -> wei_value:
 return self.balance

Give stock back to the company and get money back as ETH.
@public
def sellStock(sell_order: uint256(currency_value)):
 assert sell_order > 0 # Otherwise, this would fail at send() below,
 # due to an OOG error (there would be zero value available for gas).
 # You can only sell as much stock as you own.
 assert self._getHolding(msg.sender) >= sell_order
 # Check that the company can pay you.
 assert self.balance >= (sell_order * self.price)

 # Sell the stock, send the proceeds to the user
 # and put the stock back on the market.
 self.holdings[msg.sender] -= sell_order
 self.holdings[self.company] += sell_order
 send(msg.sender, sell_order * self.price)

 # Log the sell event.
 log.Sell(msg.sender, sell_order)

Transfer stock from one stockholder to another. (Assume that the
receiver is given some compensation, but this is not enforced.)
@public
def transferStock(receiver: address, transfer_order: uint256(currency_value)):
 assert transfer_order > 0 # This is similar to sellStock above.
 # Similarly, you can only trade as much stock as you own.
 assert self._getHolding(msg.sender) >= transfer_order

 # Debit the sender's stock and add to the receiver's address.
 self.holdings[msg.sender] -= transfer_order
 self.holdings[receiver] += transfer_order

 # Log the transfer event.
 log.Transfer(msg.sender, receiver, transfer_order)

Allow the company to pay someone for services rendered.
@public
def payBill(vendor: address, amount: wei_value):
 # Only the company can pay people.
 assert msg.sender == self.company
 # Also, it can pay only if there's enough to pay them with.
 assert self.balance >= amount

 # Pay the bill!
 send(vendor, amount)

 # Log the payment event.
 log.Pay(vendor, amount)

Return the amount in wei that a company has raised in stock offerings.
@private
@constant
def _debt() -> wei_value:
 return (self.totalShares - self._stockAvailable()) * self.price

Public function to allow external access to _debt
@public
@constant
def debt() -> wei_value:
 return self._debt()

Return the cash holdings minus the debt of the company.
The share debt or liability only is included here,
but of course all other liabilities can be included.
@public
@constant
def worth() -> wei_value:
 return self.balance - self._debt()

Note

Throughout this contract, we use a pattern where @public functions return data from @private functions that have the same name prepended with an underscore. This is because Vyper does not allow calls between public functions within the same contract. The private function handles the logic and allows internal access, while the public function acts as a getter to allow external viewing.

The contract contains a number of methods that modify the contract state as
well as a few ‘getter’ methods to read it. We first declare several events
that the contract logs. We then declare our global variables, followed by
function definitions.

Initiate the variables for the company and it's own shares.
company: public(address)
totalShares: public(uint256(currency_value))
price: public(uint256 (wei / currency_value))

Store a ledger of stockholder holdings.
holdings: map(address, uint256(currency_value))

We initiate the company variable to be of type address that’s public.
The totalShares variable is of type currency_value, which in this case
represents the total available shares of the company. The price variable
represents the wei value of a share and holdings is a mapping that maps an
address to the number of shares the address owns.

@public
def __init__(_company: address, _total_shares: uint256(currency_value),
 initial_price: uint256(wei / currency_value)):
 assert _total_shares > 0
 assert initial_price > 0

 self.company = _company
 self.totalShares = _total_shares
 self.price = initial_price

 # The company holds all the shares at first, but can sell them all.
 self.holdings[self.company] = _total_shares

In the constructor, we set up the contract to check for valid inputs during
the initialization of the contract via the two assert statements. If the
inputs are valid, the contract variables are set accordingly and the
company’s address is initialized to hold all shares of the company in the
holdings mapping.

Find out how much stock the company holds
@private
@constant
def _stockAvailable() -> uint256(currency_value):
 return self.holdings[self.company]

Public function to allow external access to _stockAvailable
@public
@constant
def stockAvailable() -> uint256(currency_value):
 return self._stockAvailable()

We will be seeing a few @constant decorators in this contract—which is
used to decorate methods that simply read the contract state or return a simple
calculation on the contract state without modifying it. Remember, reading the
blockchain is free, writing on it is not. Since Vyper is a statically typed
language, we see an arrow following the definition of the _stockAvailable()
method, which simply represents the data type which the function is expected
to return. In the method, we simply key into self.holdings with the
company’s address and check it’s holdings. Because _stockAvailable() is a
private method, we also include the public stockAvailable() method to allow
external access.

Now, lets take a look at a method that lets a person buy stock from the
company’s holding.

@public
@payable
def buyStock():
 # Note: full amount is given to company (no fractional shares),
 # so be sure to send exact amount to buy shares
 buy_order: uint256(currency_value) = msg.value / self.price # rounds down

 # Check that there are enough shares to buy.
 assert self._stockAvailable() >= buy_order

 # Take the shares off the market and give them to the stockholder.
 self.holdings[self.company] -= buy_order
 self.holdings[msg.sender] += buy_order

 # Log the buy event.
 log.Buy(msg.sender, buy_order)

The buyStock() method is a @payable method which takes an amount of
ether sent and calculates the buyOrder (the stock value equivalence at
the time of call). The number of shares is deducted from the company’s holdings
and transferred to the sender’s in the holdings mapping.

Now that people can buy shares, how do we check someone’s holdings?

Find out how much stock any address (that's owned by someone) has.
@private
@constant
def _getHolding(_stockholder: address) -> uint256(currency_value):
 return self.holdings[_stockholder]

Public function to allow external access to _getHolding
@public
@constant
def getHolding(_stockholder: address) -> uint256(currency_value):
 return self._getHolding(_stockholder)

The _getHolding() is another @constant method that takes an address
and returns its corresponding stock holdings by keying into self.holdings.
Again, a public function getHolding() is included to allow external access.

@public
@constant
def cash() -> wei_value:
 return self.balance

To check the ether balance of the company, we can simply call the getter method
cash().

@public
def sellStock(sell_order: uint256(currency_value)):
 assert sell_order > 0 # Otherwise, this would fail at send() below,
 # due to an OOG error (there would be zero value available for gas).
 # You can only sell as much stock as you own.
 assert self._getHolding(msg.sender) >= sell_order
 # Check that the company can pay you.
 assert self.balance >= (sell_order * self.price)

 # Sell the stock, send the proceeds to the user
 # and put the stock back on the market.
 self.holdings[msg.sender] -= sell_order
 self.holdings[self.company] += sell_order
 send(msg.sender, sell_order * self.price)

 # Log the sell event.
 log.Sell(msg.sender, sell_order)

To sell a stock, we have the sellStock() method which takes a number of
stocks a person wishes to sell, and sends the equivalent value in ether to the
seller’s address. We first assert that the number of stocks the person
wishes to sell is a value greater than 0. We also assert to see that
the user can only sell as much as the user owns and that the company has enough
ether to complete the sale. If all conditions are met, the holdings are deducted
from the seller and given to the company. The ethers are then sent to the seller.

@public
def transferStock(receiver: address, transfer_order: uint256(currency_value)):
 assert transfer_order > 0 # This is similar to sellStock above.
 # Similarly, you can only trade as much stock as you own.
 assert self._getHolding(msg.sender) >= transfer_order

 # Debit the sender's stock and add to the receiver's address.
 self.holdings[msg.sender] -= transfer_order
 self.holdings[receiver] += transfer_order

 # Log the transfer event.
 log.Transfer(msg.sender, receiver, transfer_order)

A stockholder can also transfer their stock to another stockholder with the
transferStock() method. The method takes a receiver address and the number
of shares to send. It first asserts that the amount being sent is greater
than 0 and asserts whether the sender has enough stocks to send. If
both conditions are satisfied, the transfer is made.

@public
def payBill(vendor: address, amount: wei_value):
 # Only the company can pay people.
 assert msg.sender == self.company
 # Also, it can pay only if there's enough to pay them with.
 assert self.balance >= amount

 # Pay the bill!
 send(vendor, amount)

 # Log the payment event.
 log.Pay(vendor, amount)

The company is also allowed to pay out an amount in ether to an address by
calling the payBill() method. This method should only be callable by the
company and thus first checks whether the method caller’s address matches that
of the company. Another important condition to check is that the company has
enough funds to pay the amount. If both conditions satisfy, the contract
sends its ether to an address.

Return the amount in wei that a company has raised in stock offerings.
@private
@constant
def _debt() -> wei_value:
 return (self.totalShares - self._stockAvailable()) * self.price

Public function to allow external access to _debt
@public
@constant
def debt() -> wei_value:
 return self._debt()

We can also check how much the company has raised by multiplying the number of
shares the company has sold and the price of each share. Internally, we get
this value by calling the _debt() method. Externally it is accessed via debt().

@public
@constant
def worth() -> wei_value:
 return self.balance - self._debt()

Finally, in this worth() method, we can check the worth of a company by
subtracting its debt from its ether balance.

This contract has been the most thorough example so far in terms of its
functionality and features. Yet despite the thoroughness of such a contract, the
logic remained simple. Hopefully, by now, the Vyper language has convinced you
of its capabilities and readability in writing smart contracts.

Event Logging

Like Solidity and other EVM languages, Vyper can log events to be caught and displayed by user interfaces.

Example of Logging

This example is taken from the sample ERC20 contract [https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20_solidity_compatible/ERC20.vy] and shows the basic flow of event logging.

Events of the token.
Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256})
Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256})

Transfer some tokens from message sender to another address
def transfer(_to : address, _value : uint256) -> bool:

 ... Logic here to do the real work ...

 # All done, log the event for listeners
 log.Transfer(msg.sender, _to, _amount)

Let’s look at what this is doing. First, we declare two event types to log. The two events are similar in that they contain
two indexed address fields. Indexed fields do not make up part of the event data itself, but can be searched by clients that
want to catch the event. Also, each event contains one single data field, in each case called _value. Events can contain several arguments with any names desired.

Next, in the transfer function, after we do whatever work is necessary, we log the event. We pass three arguments, corresponding with the three arguments of the Transfer event declaration.

Clients listening to the events will declare and handle the events they are interested in using a library such as web3.js [http://solidity.readthedocs.io/en/develop/contracts.html#events]:

var abi = /* abi as generated by the compiler */;
var MyToken = web3.eth.contract(abi);
var myToken = MyToken.at("0x1234...ab67" /* address */);

// watch for changes in the callback
var event = myToken.Transfer(function(error, result) {
 if (!error) {
 var args = result.args;
 console.log('value transferred = ', args._amount);
 }
});

In this example, the listening client declares the event to listen for. Any time the contract sends this log event, the callback will be invoked.

Declaring Events

Let’s look at an event declaration in more detail.

Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256})

Event declarations look like state variable declarations but use the special keyword event. event takes its arguments that consists of all the arguments to be passed as part of the event. Typical events will contain two kinds of arguments:

	Indexed arguments, which can be searched for by listeners. Each indexed argument is identified by the indexed keyword. Here, each indexed argument is an address. You can have any number of indexed arguments, but indexed arguments are not passed directly to listeners, although some of this information (such as the sender) may be available in the listener’s results object.

	Value arguments, which are passed through to listeners. You can have any number of value arguments and they can have arbitrary names, but each is limited by the EVM to be no more than 32 bytes.

Note that while the argument definition syntax looks like a Python dictionary, it’s actually an order-sensitive definition. (Python dictionaries maintain order starting with 3.7 [https://mail.python.org/pipermail/python-dev/2017-December/151283.html].) Thus, the first element (_from) will be matched up with the first argument passed in the log.Transfer call.

Logging Events

Once an event is declared, you can log (send) events. You can send events as many times as you want to. Please note that events sent do not take state storage and thus do not cost gas: this makes events a good way to save some information. However, the drawback is that events are not available to contracts, only to clients.

Logging events is done using the magic keyword log:

log.Transfer(msg.sender, _to, _amount)

The order and types of arguments sent needs to match up with the order of declarations in the dictionary.

Listening for Events

In the example listener above, the result arg actually passes a large amount of information [https://github.com/ethereum/wiki/wiki/JavaScript-API#contract-events]. Here we’re most interested in result.args. This is an object with properties that match the properties declared in the event. Note that this object does not contain the indexed properties, which can only be searched in the original myToken.Transfer that created the callback.

Contributing

Help is always appreciated!

To get started, you can try installing Vyper [https://vyper.readthedocs.io/en/latest/installing-vyper.html] in order to familiarize
yourself with the components of Vyper and the build process. Also, it may be
useful to become well-versed at writing smart-contracts in Vyper.

Types of Contributions

In particular, we need help in the following areas:

	Improving the documentation

	Responding to questions from other users on StackExchange [https://ethereum.stackexchange.com] and the Vyper Gitter [https://gitter.im/ethereum/vyper]

	Suggesting Improvements

	Fixing and responding to Vyper’s GitHub issues [https://github.com/ethereum/vyper/issues]

How to Suggest Improvements

To suggest an improvement, please create a Vyper Improvement Proposal (VIP for short)
using the VIP Template [https://github.com/ethereum/vyper/blob/master/.github/ISSUE_TEMPLATE/vip.md].

How to Report Issues

To report an issue, please use the
GitHub issues tracker [https://github.com/ethereum/vyper/issues]. When
reporting issues, please mention the following details:

	Which version of Vyper you are using

	What was the source code (if applicable)

	Which platform are you running on

	Your operating system name and version

	Detailed steps to reproduce the issue

	What was the result of the issue

	What the expected behaviour is

Reducing the source code that caused the issue to a bare minimum is always
very helpful and sometimes even clarifies a misunderstanding.

Fix Bugs

Find or report bugs at our issues page [https://github.com/ethereum/vyper/issues]. Anything tagged with “bug” is open to whoever wants to implement it.

Workflow for Pull Requests

In order to contribute, please fork off of the master branch and make your
changes there. Your commit messages should detail why you made your change
in addition to what you did (unless it is a tiny change).

If you need to pull in any changes from master after making your fork (for
example, to resolve potential merge conflicts), please avoid using git merge
and instead, git rebase your branch.

Implement Features

If you are writing a new feature, please ensure you write appropriate
Boost test cases and place them under tests/.

If you are making a larger change, please consult first with the Gitter channel.

Although we do CI testing, please make sure that the tests pass for supported Python version and ensure that it builds locally before submitting a pull request.

Thank you for your help! ​

Frequently Asked Questions

Basic Questions

What is Vyper?

Vyper is a smart contract development language. Vyper aims to be auditable, secure, and human-readable. Being simple to read is more important than being simple to write.

Vyper or Solidity?

For the majority of use-cases, this is personal preference. To support the aims of being secure, auditable, and human-readable, a number of programming constructs included in Solidity are not included in Vyper. If your use-case requires these, use Solidity not Vyper.

What is not included in Vyper?

The following constructs are not included because their use can lead to misleading or difficult to understand code:

	Modifiers

	Class inheritance

	Inline assembly

	Function overloading

	Operator overloading

	Binary fixed point.

Recursive calling and infinite-length loops are not included because they cannot set an upper bound on gas limits. An upper bound is required to prevent gas limit attacks and ensure the security of smart contracts built in Vyper.

How do for loops work?

Like Python for loops but with one significant difference. Vyper does not allow looping over variable lengths. Looping over variables introduces the possibility of infinite-length loops which make gas limit attacks possible.

How do structs work?

Structs group variables and are accessed using struct.argname. They are similar to Python classes:

define the struct
struct MyStruct:
 arg1: int128
 arg2: decimal
struct: MyStruct

#access arg1 in struct
struct.arg1 = 1

Built in Functions

Vyper provides a collection of built in functions available in the global namespace of all
contracts.

Functions

floor

def floor(a) -> b:
 """
 :param a: value to round down
 :type a: decimal

 :output b: int128
 """

Rounds a decimal down to the nearest integer.

ceil

def ceil(a) -> b:
 """
 :param a: value to round up
 :type a: decimal

 :output b: int128
 """

Rounds a decimal up to the nearest integer.

convert

def convert(a, b) -> c:
 """
 :param a: value to convert
 :type a: either bool, decimal, int128, uint256 or bytes32
 :param b: the destination type to convert to
 :type b: type of either bool, decimal, int128, uint256 or bytes32

 :output c: either decimal, int128, uint256 or bytes32
 """

Converts a variable or literal from one type to another.

For more details on available type conversions, see Type Conversions.

clear

def clear(a):
 """
 :param a: variable to reset to its default value
 :type a: all types
 """

Clears a variable’s contents to the default value of its type.

as_wei_value

def as_wei_value(a, b) -> c:
 """
 :param a: value for the ether unit
 :type a: uint256 or int128 or decimal
 :param b: ether unit name (e.g. ``"wei"``)
 :type b: str_literal

 :output c: wei_value
 """

Takes an amount of ether currency specified by a number and a unit (e.g. "wei", "ether",
"gwei", etc.) and returns the integer quantity of wei equivalent to that amount.

as_unitless_number

def as_unitless_number(a) -> b:
 """
 :param a: value to remove units from
 :type a: either decimal or int128

 :output b: either decimal or int128
 """

Converts a int128, uint256, or decimal value with units into one without units (used for
assignment and math).

slice

def slice(a, start=b, len=c) -> d:
 """
 :param a: bytes to be sliced
 :type a: either bytes or bytes32
 :param b: start position of the slice
 :type b: int128
 :param c: length of the slice
 :type c: int128

 :output d: bytes
 """

Takes a list of bytes and copies, then returns a specified chunk.

len

def len(a) -> b:
 """
 :param a: value to get the length of
 :type a: bytes

 :output b: int128
 """

Returns the length of a given list of bytes.

concat

def concat(a, b, ...) -> c:
 """
 :param a: value to combine
 :type a: bytes, bytes32
 :param b: value to combine
 :type b: bytes, bytes32

 :output c: bytes
 """

Takes 2 or more bytes arrays of type bytes32 or bytes and combines them into one.

keccak256

def keccak256(a) -> b:
 """
 :param a: value to hash
 :type a: either str_literal, bytes, bytes32

 :output b: bytes32
 """

Returns keccak256 hash of input.

sha256

def sha256(a) -> b:
 """
 :param a: value to hash
 :type a: either str_literal, bytes, bytes32

 :output b: bytes32
 """

Returns sha256 (SHA2 256bit output) hash of input.

sqrt

def sqrt(a: decimal) -> decimal:
 """
 :param a:
 :type a: decimal, larger than 0.0

 :output sqrt: decimal
 """

Returns the suare of the provided decimal number, using the Babylonian square root algorithm.

method_id

def method_id(a, b) -> c:
 """
 :param a: method declaration
 :type a: str_literal
 :param b: type of output
 :type b: either bytes32 or bytes[4]

 :output c: either bytes32 or bytes[4]
 """

Takes a function declaration and returns its method_id (used in data field to call it).

ecrecover

def ecrecover(hash, v, r, s) -> b:
 """
 :param hash: a signed hash
 :type hash: bytes32
 :param v:
 :type v: uint256
 :param r: elliptic curve point
 :type r: uint256
 :param s: elliptic curve point
 :type s: uint256

 :output b: address
 """

Takes a signed hash and vrs and returns the public key of the signer.

ecadd

def ecadd(a, b) -> sum:
 """
 :param a: pair to be added
 :type a: uint256[2]
 :param b: pair to be added
 :type b: uint256[2]

 :output sum: uint256[2]
 """

Takes two elliptic curves and adds them together.

ecmul

def ecmul(a, b) -> product:
 """
 :param a: pair to be multiplied
 :type a: uint256[2]
 :param b: number to be multiplied
 :type b: uint256

 :output product: uint256[2]
 """

Takes two elliptic curves and multiplies them together.

extract32

def extract32(a, b, type=c) -> d:
 """
 :param a: where 32 bytes are extracted from
 :type a: bytes
 :param b: start point of bytes to be extracted
 :type b: int128
 :param c: type of output (Optional, default: bytes32)
 :type c: either bytes32, int128, or address

 :output d: either bytes32, int128, or address
 """

RLPList

def _RLPList(a, b) -> c:
 """
 :param a: encoded data
 :type a: bytes
 :param b: RLP list
 :type b: list

 :output c: LLLnode
 """

Takes encoded RLP data and an unencoded list of types. Usage:

vote_msg: bytes <= 1024 = ...

values = RLPList(vote_msg, [int128, int128, bytes32, bytes, bytes])

var1: int128 = values[0]
var2: int128 = values[1]
var3: bytes32 = values[2]
var4: bytes <= 1024 = values[3]
var5: bytes <= 1024 = values[4]

Note: RLP decoder needs to be deployed if one wishes to use it outside of the Vyper test suite. Eventually, the decoder will be available on mainnet at a fixed address. But for now, here’s how to create RLP decoder on other chains:

1. send 6270960000000000 wei to 0xd2c560282c9C02465C2dAcdEF3E859E730848761

2. Publish this tx to create the contract:

0xf90237808506fc23ac00830330888080b902246102128061000e60003961022056600060007f010060003504600060c082121515585760f882121561004d5760bf820336141558576001905061006e565b600181013560f783036020035260005160f6830301361415585760f6820390505b5b368112156101c2577f010081350483602086026040015260018501945060808112156100d55760018461044001526001828561046001376001820191506021840193506101bc565b60b881121561014357608081038461044001526080810360018301856104600137608181141561012e5760807f010060018401350412151558575b607f81038201915060608103840193506101bb565b60c08112156101b857600182013560b782036020035260005160388112157f010060018501350402155857808561044001528060b6838501038661046001378060b6830301830192506020810185019450506101ba565bfe5b5b5b5061006f565b601f841315155857602060208502016020810391505b6000821215156101fc578082604001510182826104400301526020820391506101d8565b808401610420528381018161044003f350505050505b6000f31b2d4f

3. This is the contract address: 0xCb969cAAad21A78a24083164ffa81604317Ab603

Low Level Built in Functions

Vyper contains a set of built in functions which executes unique OPCODES such as send or selfdestruct.

Low Level Functions

send

def send(a, b):
 """
 :param a: the destination address to send ether to
 :type a: address
 :param b: the wei value to send to the address
 :type b: uint256(wei)
 """

Sends ether from the contract to the specified Ethereum address.
Note that the amount to send should be specified in wei.

raw_call

def raw_call(a, b, outsize=c, gas=d, value=e, delegate_call=f) -> g:
 """
 :param a: the destination address to call to
 :type a: address
 :param b: the data to send the called address
 :type b: bytes
 :param c: the max-length for the bytes array returned from the call.
 :type c: fixed literal value
 :param d: the gas amount to attach to the call.
 :type d: uint256
 :param e: the wei value to send to the address (Optional, default: 0)
 :type e: uint256
 :param f: the bool of whether or not to use DELEGATECALL (Optional, default: False)
 :type f: bool

 :output g: bytes[outsize]
 """

Calls to the specified Ethereum address.
The call should pass data and may optionally send eth value (specified in wei) as well.
The call must specify a gas amount to attach the call and and the outsize.
Returns the data returned by the call as a bytes array with the outsize as the max length.

selfdestruct

def selfdestruct(a):
 """
 :param a: the address to send the contracts left ether to
 :type a: address
 """

Causes a self destruction of the contract, triggers the SELFDESTRUCT opcode (0xff).
CAUTION! This method will delete the contract from the Ethereum blockchain. All none ether assets associated with this contract will be “burned” and the contract will be inaccessible.

raise

def raise(a):
 """
 :param a: the exception reason (must be <= 32 bytes)
 :type a: str
 """

Raises an exception by triggering the OPCODE REVERT (0xfd) with the provided reason given as the error message. The code will stop operation, the contract’s state will be reverted to the state before the transaction took place and the remaining gas will be returned to the transaction’s sender.

Note: To give it a more Python-like syntax, the raise function can be called without parenthesis, the syntax would be raise "An exception". Even though both options will compile, it’s recommended to use the Pythonic version without parentheses.

assert

def assert(a, reason=None):
 """
 :param a: the boolean condition to assert
 :type a: bool
 :param reason: the reason provided to REVERT
 :param reason=UNREACHABLE: generate an INVALID opcode
 :type b: str
 """

Asserts the specified condition. The behavior is equivalent to:

if not a:
 raise reason

(the only difference in behavior is that assert can be called without a reason string, while raise requires a reason string).

If assert is passed to an assert statement, an INVALID (0xFE) opcode will be used instead of an REVERT opcode.

Note: To give it a more Python-like syntax, the assert function can be called without parenthesis, the syntax would be assert your_bool_condition. Even though both options will compile, it’s recommended to use the Pythonic version without parenthesis.

raw_log

def raw_log(a, b):
 """
 :param a: 0-4 topics.
 :type a: list of bytes32 of length 0-4
 :param b: the name of the logged event
 :type b: bytes
 """

Emits a log without specifying the abi type, with the arguments entered as the first input.

create_forwarder_to

def create_forwarder_to(a, value=b):
 """
 :param a: the address of the contract to duplicate.
 :type a: address
 :param b: the wei value to send to the new contract instance (Optional, default: 0)
 :type b: uint256(wei)
 """

Duplicates a contract’s code and deploys it as a new instance, by means of a DELEGATECALL.
You can also specify wei value to send to the new contract as value=the_value.

blockhash

def blockhash(a) -> hash:
 """
 :param a: the number of the block to get
 :type a: uint256

 :output hash: bytes32
 """

Returns the hash of the block at the specified height.

Note: The EVM only provides access to the most 256 blocks. This function will return 0 if the block number is greater than or equal to the current block number or more than 256 blocks behind the current block.

Types

Vyper is a statically typed language, which means that the type of each
variable (state and local) needs to be specified or at least known at
compile-time. Vyper provides several elementary types which can be combined
to form complex types.

In addition, types can interact with each other in expressions containing
operators.

Value Types

The following types are also called value types because variables of these
types will always be passed by value, i.e. they are always copied when they
are used as function arguments or in assignments.

Boolean

Keyword: bool

A boolean is a type to store a logical/truth value.

Values

The only possible values are the constants True and False.

Operators

	Operator

	Description

	x not y

	Logical negation

	x and y

	Logical conjunction

	x or y

	Logical disjunction

	x == y

	Equality

	x != y

	Inequality

The operators or and and do not apply short-circuiting rules, i.e. both
x and y will always be evaluated.

Signed Integer (128 bit)

Keyword: int128

A signed integer (128 bit) is a type to store positive and negative integers.

Values

Signed integer values between -2127 and (2127 - 1), inclusive.

Operators

Comparisons

Comparisons return a boolean value.

	Operator

	Description

	x < y

	Less than

	x <= y

	Less than or equal to

	x == y

	Equals

	x != y

	Does not equal

	x >= y

	Greater than or equal to

	x > y

	Greater than

x and y must be of the type int128.

Arithmetic Operators

	Operator

	Description

	x + y

	Addition

	x - y

	Subtraction

	-x

	Unary minus/Negation

	x * y

	Multiplication

	x / y

	Division

	x**y

	Exponentiation

	x % y

	Modulo

	min(x, y)

	Minimum

	max(x, y)

	Maximum

x and y must be of the type int128.

Unsigned Integer (256 bit)

Keyword: uint256

An unsigned integer (256 bit) is a type to store non-negative integers.

Values

Integer values between 0 and (2256-1).

Note

Integer literals are interpreted as int128 by default. In cases where uint256 is more appropriate, such as assignment, the literal might be interpreted as uint256. Example: _variable: uint256 = _literal. In order to explicitly cast a literal to a uint256 use convert(_literal, uint256).

Operators

Comparisons

Comparisons return a boolean value.

	Operator

	Description

	x < y

	Less than

	x <= y

	Less than or equal to

	x == y

	Equals

	x != y

	Does not equal

	x >= y

	Greater than or equal to

	x > y

	Greater than

x and y must be of the type uint256.

Arithmetic Operators

	Operator

	Description

	x + y

	Addition

	x - y

	Subtraction

	uint256_addmod(x, y, z)

	Addition modulo z

	x * y

	Multiplication

	uint256_mulmod(x, y, z)

	Multiplication modulo z

	x / y

	Division

	x**y

	Exponentiation

	x % y

	Modulo

	min(x, y)

	Minimum

	max(x, y)

	Maximum

x, y and z must be of the type uint256.

Bitwise Operators

	Operator

	Description

	bitwise_and(x, y)

	AND

	bitwise_not(x, y)

	NOT

	bitwise_or(x, y)

	OR

	bitwise_xor(x, y)

	XOR

	shift(x, _shift)

	Bitwise Shift

x and y must be of the type uint256. _shift must be of the type int128.

Note

Positive _shift equals a left shift; negative _shift equals a right shift.
Values shifted above/below the most/least significant bit get discarded.

Decimals

Keyword: decimal

A decimal is a type to store a decimal fixed point value.

Values

A value with a precision of 10 decimal places between -2127 and (2127 - 1).

Operators

Comparisons

Comparisons return a boolean value.

	Operator

	Description

	x < y

	Less than

	x <= y

	Less or equal

	x == y

	Equals

	x != y

	Does not equal

	x >= y

	Greater or equal

	x > y

	Greater than

x and y must be of the type decimal.

Arithmetic Operators

	Operator

	Description

	x + y

	Addition

	x - y

	Subtraction

	-x

	Unary minus/Negation

	x * y

	Multiplication

	x / y

	Division

	x % y

	Modulo

	min(x, y)

	Minimum

	max(x, y)

	Maximum

	floor(x)

	Largest integer <= x. Returns int128.

	ceil(x)

	Smallest integer >= x. Returns int128.

x and y must be of the type decimal.

Address

Keyword: address

The address type holds an Ethereum address.

Values

An address type can hold an Ethereum address which equates to 20 bytes or 160 bits. It returns in hexadecimal notation with a leading 0x.

Members

	Member

	Description

	balance

	Query the balance of an address. Returns wei_value.

	codesize

	Query the code size of an address. Returns int128.

	is_contract

	Query whether it is a contract address. Returns bool.

Syntax as follows: _address.<member>, where _address is of the type address and <member> is one of the above keywords.

Unit Types

Vyper allows the definition of types with discrete units e.g. meters, seconds, wei, … . These types may only be based on either uint256, int128 or decimal.
Vyper has 3 unit types built in, which are the following:

Time

	Keyword

	Unit

	Base type

	Description

	timestamp

	1 sec

	uint256

	This represents a point in time.

	timedelta

	1 sec

	uint256

	This is a number of seconds.

Note

Two timedelta can be added together, as can a timedelta and a timestamp, but not two timestamps.

Wei

	Keyword

	Unit

	Base type

	Description

	wei_value

	1 wei

	uint256

	This is an amount of Ether [http://ethdocs.org/en/latest/ether.html#denominations] in wei.

Custom Unit Types

Vyper allows you to add additional not-provided unit label to either uint256, int128 or decimal.

Custom units example:

specify units used in the contract.
units: {
 cm: "centimeter",
 km: "kilometer"
}

Having defined the units they can be defined on variables as follows.

Custom units usage:

a: int128(cm)
b: uint256(km)

32-bit-wide Byte Array

Keyword: bytes32
This is a 32-bit-wide byte array that is otherwise similar to byte arrays.

Example:

Declaration
hash: bytes32
Assignment
self.hash = _hash

Operators

	Keyword

	Description

	keccak256(x)

	Return the keccak256 hash as bytes32.

	concat(x, ...)

	Concatenate multiple inputs.

	slice(x, start=_start, len=_len)

	Return a slice of _len starting at _start.

Where x is a byte array and _start as well as _len are integer values.

Fixed-size Byte Arrays

Keyword: bytes

A byte array with a fixed size.
The syntax being bytes[maxLen], where maxLen is an integer which denotes the maximum number of bytes.
On the ABI level the Fixed-size bytes array is annotated as bytes.

Example:

example_bytes: bytes[100] = b"\x01\x02\x03"

Fixed-size Strings

Keyword: string
Fixed-size strings can hold strings with equal or fewer characters than the maximum length of the string.
On the ABI level the Fixed-size bytes array is annotated as string.

Example:

example_str: string[100] = "Test String"

Operators

	Keyword

	Description

	len(x)

	Return the length as an integer.

	keccak256(x)

	Return the keccak256 hash as bytes32.

	concat(x, ...)

	Concatenate multiple inputs.

	slice(x, start=_start, len=_len)

	Return a slice of _len starting at _start.

Where x is a byte array or string while _start and _len are integers.
The len, keccak256, concat, slice operators can be used with string and bytes types.

Reference Types

Reference types do not fit into 32 bytes. Because of this, copying their value is not as feasible as
with value types. Therefore only the location, i.e. the reference, of the data is passed.

Fixed-size Lists

Fixed-size lists hold a finite number of elements which belong to a specified type.

Syntax

Lists can be declared with _name: _ValueType[_Integer]. Multidimensional lists are also possible.

Example:

#Defining a list
exampleList: int128[3]
#Setting values
exampleList = [10, 11, 12]
exampleList[2] = 42
#Returning a value
return exampleList[0]

Structs

Structs are custom defined types that can group several variables.

Syntax

Structs can be accessed via struct.argname.
Example:

#Defining a struct
struct MyStruct:
 value1: int128
 value2: decimal
exampleStruct: MyStruct
#Constructing a struct
exampleStruct = MyStruct({value1: 1, value2: 2})
#Accessing a value
exampleStruct.value1 = 1

Mappings

Mappings in Vyper can be seen as hash tables [https://en.wikipedia.org/wiki/Hash_table] which are virtually initialized such that
every possible key exists and is mapped to a value whose byte-representation is
all zeros: a type’s default value. The similarity ends here, though: The key data is not actually stored
in a mapping, only its keccak256 hash used to look up the value. Because of this, mappings
do not have a length or a concept of a key or value being “set”.

It is possible to mark mappings public and have Vyper create a getter.
The _KeyType will become a required parameter for the getter and it will
return _ValueType.

Note

Mappings are only allowed as state variables.

Syntax

Mapping types are declared as map(_KeyType, _ValueType).
Here _KeyType can be any base or bytes type. Mappings, contract or structs are not support as key types.
_ValueType can actually be any type, including mappings.

Example:

#Defining a mapping
exampleMapping: map(int128, decimal)
#Accessing a value
exampleMapping[0] = 10.1

Note

Mappings can only be accessed, not iterated over.

Built In Constants

Vyper has a few convenience constants builtin.

	Type

	Name

	Value

	address

	ZERO_ADDRESS

	0x00

	bytes32

	EMPTY_BYTES32

	0x00

	int128

	MAX_INT128

	2**127 - 1

	int128

	MIN_INT128

	-2**127

	decimal

	MAX_DECIMAL

	(2**127 - 1)

	decimal

	MIN_DECIMAL

	(-2**127)

	uint256

	MAX_UINT256

	2**256 - 1

Custom Constants

Custom constants can be defined at a global level in Vyper. To define a constant make use of the constant keyword.

Example:

TOTAL_SUPPLY: constant(uint256) = 10000000
total_supply: public(uint256)

@public
def __init__():
 self.total_supply = TOTAL_SUPPLY

Advanced Example:

units: {
 share: "Share unit"
}

MAX_SHARES: constant(uint256(share)) = 1000
SHARE_PRICE: constant(uint256(wei/share)) = 5

@public
def market_cap() -> uint256(wei):
 return MAX_SHARES * SHARE_PRICE

Initial Values

In Vyper, there is no null option like most programming languages have. Thus, every variable type has a default value. In order to check if a variable is empty, you will need to compare it to its type’s default value.
If you would like to reset a variable to its type’s default value, use the built-in clear() function.

Here you can find a list of all types and default values:

Default Variable Values

	Type

	Default Value

	bool

	False

	int128

	0

	uint256

	0

	decimal

	0.0

	address

	0x00

	bytes32

	'\x00'

Note

In bytes the array starts with the bytes all set to '\x00'

Note

In reference types all the type’s members are set to their initial values.

Type Conversions

All type conversions in Vyper must be made explicitly using the built-in convert(a, b) function. Currently, the following type conversions are supported:

Basic Type Conversions

	Destination Type (b)

	Input Type (a.type)

	Allowed Inputs Values (a)

	Additional Notes

	bool

	bool

	—

	Do not allow converting to/from the same type

	bool

	decimal

	MINNUM...MAXNUM

	Has the effective conversion logic of: return (a != 0.0)

	bool

	int128

	MINNUM...MAXNUM

	Has the effective conversion logic of: return (a != 0)

	bool

	uint256

	0...MAX_UINT256

	Has the effective conversion logic of: return (a != 0)

	bool

	bytes32

	(0x00 * 32)...(0xFF * 32)

	Has the effective conversion logic of: return (a != 0x00)

	bool

	bytes

	(0x00 * 1)...(0xFF * 32)

	Has the effective conversion logic of: return (a != 0x00)

	
	
	
	

	decimal

	bool

	True / False

	Result will be 0.0 or 1.0

	decimal

	decimal

	—

	Do not allow converting to/from the same type

	decimal

	int128

	MINNUM...MAXNUM

	

	decimal

	uint256

	0...MAXDECIMAL

	

	decimal

	bytes32

	(0x00 * 32)...(0xFF * 32)

	

	decimal

	bytes

	(0x00 * 1)...(0xFF * 32)

	

	
	
	
	

	int128

	bool

	True / False

	Result will be 0 or 1

	int128

	decimal

	MINNUM...MAXNUM

	Only allow input within int128 supported range, truncates the decimal value

	int128

	int128

	—

	Do not allow converting to/from the same type

	int128

	uint256

	0...MAXNUM

	

	int128

	bytes32

	(0x00 * 32)...(0xFF * 32)

	

	int128

	bytes

	(0x00 * 1)...(0xFF * 32)

	

	
	
	
	

	uint256

	bool

	True / False

	Result will be 0 or 1

	uint256

	decimal

	0...MAXDECIMAL

	Truncates the decimal value

	uint256

	int128

	0...MAXNUM

	

	uint256

	uint256

	—

	Do not allow converting to/from the same type

	uint256

	bytes32

	(0x00 * 32)...(0xFF * 32)

	

	uint256

	bytes

	(0x00 * 1)...(0xFF * 32)

	

	
	
	
	

	bytes32

	bool

	True / False

	Result will be either (0x00 * 32) or (0x00 * 31 + 0x01)

	bytes32

	decimal

	MINDECIMAL...MAXDECIMAL

	Has the effective behavior of multiplying the decimal value by the decimal divisor 10000000000 and then converting that signed integer value to a bytes32 byte array

	bytes32

	int128

	MINNUM...MAXNUM

	

	bytes32

	uint256

	0...MAX_UINT256

	

	bytes32

	bytes32

	—

	Do not allow converting to/from the same type

	bytes32

	bytes

	(0x00 * 1)...(0xFF * 32)

	Left-pad input bytes to size of 32

Release Notes

v0.1.0-beta.12

Date released: 27-08-2019

The following VIPs were implemented for Beta 12:

	Support for relative imports (VIP #1367 [https://github.com/ethereum/vyper/issues/1367])

	Restricted use of environment variables in private functions (VIP #1199 [https://github.com/ethereum/vyper/issues/1199])

Some of the bug and stability fixes:

	@nonreentrant/@constant logical inconsistency (#1544 [https://github.com/ethereum/vyper/issues/1544])

	Struct passthrough issue (#1551 [https://github.com/ethereum/vyper/issues/1551])

	Private underflow issue (#1470 [https://github.com/ethereum/vyper/issues/1470])

	Constancy check issue (#1480 [https://github.com/ethereum/vyper/pull/1480])

	Prevent use of conflicting method IDs (#1530 [https://github.com/ethereum/vyper/pull/1530])

	Missing arg check for private functions (#1579 [https://github.com/ethereum/vyper/pull/1579])

	Zero padding issue (#1563 [https://github.com/ethereum/vyper/issues/1563])

	vyper.cli rearchitecture of scripts (#1574 [https://github.com/ethereum/vyper/issues/1574])

	AST end offsets and Solidity-compatible compressed sourcemap (#1580 [https://github.com/ethereum/vyper/pull/1580])

Special thanks to (@iamdefinitelyahuman [https://github.com/iamdefinitelyahuman]) for lots of updates this release!

v0.1.0-beta.11

Date released: 23-07-2019

Beta 11 brings some performance and stability fixes.

	Using calldata instead of memory parameters. (#1499 [https://github.com/ethereum/vyper/pull/1499])

	Reducing of contract size, for large parameter functions. (#1486 [https://github.com/ethereum/vyper/pull/1486])

	Improvements for Windows users (#1486 [https://github.com/ethereum/vyper/pull/1486]) (#1488 [https://github.com/ethereum/vyper/pull/1488])

	Array copy optimisation (#1487 [https://github.com/ethereum/vyper/pull/1487])

	Fixing @nonreentrant decorator for return statements (#1532 [https://github.com/ethereum/vyper/pull/1532])

	sha3 builtin function removed (#1328 [https://github.com/ethereum/vyper/issues/1328])

	Disallow conflicting method IDs (#1530 [https://github.com/ethereum/vyper/pull/1530])

	Additional convert() supported types (#1524 [https://github.com/ethereum/vyper/pull/1524]) (#1500 [https://github.com/ethereum/vyper/pull/1500])

	Equality operator for strings and bytes (#1507 [https://github.com/ethereum/vyper/pull/1507])

	Change in compile_codes interface function (#1504 [https://github.com/ethereum/vyper/pull/1504])

Thanks to all the contributors!

v0.1.0-beta.10

Date released: 24-05-2019

	Lots of linting and refactoring!

	Bugfix with regards to using arrays as parameters to private functions (#1418 [https://github.com/ethereum/vyper/issues/1418]). Please check your contracts, and upgrade to latest version, if you do use this.

	Slight shrinking in init produced bytecode. (#1399 [https://github.com/ethereum/vyper/issues/1399])

	Additional constancy protection in the for .. range expression. (#1397 [https://github.com/ethereum/vyper/issues/1397])

	Improved bug report (#1394 [https://github.com/ethereum/vyper/issues/1394])

	Fix returning of External Contract from functions (#1376 [https://github.com/ethereum/vyper/issues/1376])

	Interface unit fix (#1303 [https://github.com/ethereum/vyper/issues/1303])

	Not Equal (!=) optimisation (#1303 [https://github.com/ethereum/vyper/issues/1303]) 1386

	New assert <condition>, UNREACHABLE statement. (#711 [https://github.com/ethereum/vyper/issues/711])

Special thanks to (Charles Cooper [https://github.com/charles-cooper]), for some excellent contributions this release.

v0.1.0-beta.9

Date released: 12-03-2019

	Add support for list constants (#1211 [https://github.com/ethereum/vyper/issues/1211])

	Add sha256 function (#1327 [https://github.com/ethereum/vyper/issues/1327])

	Renamed create_with_code_of to create_forwarder_to (#1177 [https://github.com/ethereum/vyper/issues/1177])

	@nonreentrant Decorator (#1204 [https://github.com/ethereum/vyper/issues/1204])

	Add opcodes and opcodes_runtime flags to compiler (#1255 [https://github.com/ethereum/vyper/issues/1255])

	Improved External contract call interfaces (#885 [https://github.com/ethereum/vyper/issues/885])

Prior to v0.1.0-beta.9

Prior to this release, we managed our change log in a different fashion.
Here is the old changelog:

	2019.04.05: Add stricter checking of unbalanced return statements. (#590 [https://github.com/ethereum/vyper/issues/590])

	2019.03.04: create_with_code_of has been renamed to create_forwarder_to. (#1177 [https://github.com/ethereum/vyper/issues/1177])

	2019.02.14: Assigning a persistent contract address can only be done using the bar_contact = ERC20(<address>) syntax.

	2019.02.12: ERC20 interface has to be imported using from vyper.interfaces import ERC20 to use.

	2019.01.30: Byte array literals need to be annoted using b”“, strings are represented as “”.

	2018.12.12: Disallow use of None, disallow use of del, implemented clear() built-in function.

	2018.11.19: Change mapping syntax to use map(). (VIP564 [https://github.com/ethereum/vyper/issues/564])

	2018.10.02: Change the convert style to use types instead of string. (VIP1026 [https://github.com/ethereum/vyper/issues/1026])

	2018.09.24: Add support for custom constants.

	2018.08.09: Add support for default parameters.

	2018.06.08: Tagged first beta.

	2018.05.23: Changed wei_value to be uint256.

	2018.04.03: Changed bytes declaration from ‘bytes <= n’ to ‘bytes[n]’.

	2018.03.27: Renaming signed256 to int256.

	2018.03.22: Add modifiable and static keywords for external contract calls.

	2018.03.20: Renaming __log__ to event.

	2018.02.22: Renaming num to int128, and num256 to uint256.

	2018.02.13: Ban functions with payable and constant decorators.

	2018.02.12: Division by num returns decimal type.

	2018.02.09: Standardize type conversions.

	2018.02.01: Functions cannot have the same name as globals.

	2018.01.27: Change getter from get_var to var.

	2018.01.11: Change version from 0.0.2 to 0.0.3

	2018.01.04: Types need to be specified on assignment (VIP545 [https://github.com/ethereum/vyper/issues/545]).

	2017.01.02 Change as_wei_value to use quotes for units.

	2017.12.25: Change name from Viper to Vyper.

	2017.12.22: Add continue for loops

	2017.11.29: @internal renamed to @private.

	2017.11.15: Functions require either @internal or @public decorators.

	2017.07.25: The def foo() -> num(const): ... syntax no longer works; you now need to do def foo() -> num: ... with a @constant decorator on the previous line.

	2017.07.25: Functions without a @payable decorator now fail when called with nonzero wei.

	2017.07.25: A function can only call functions that are declared above it (that is, A can call B only if B appears earlier in the code than A does). This was introduced

Index

 A
 | B
 | C
 | D
 | F
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	arrays

 	
 auction

 	blind

 	open

B

 	
 	ballot

 	blind auction

 	bool

 	
 	built-in;

 	bytes

 	bytes32

C

 	
 	company stock

 	contract

 	
 	conversion

 	crowdfund

D

 	
 	
 deploying

 	deploying;

F

 	
 	false

 	
 	function, [1]

I

 	
 	initial

 	int

 	
 	int128

 	integer

M

 	
 	mapping

 	
 	metadata;

O

 	
 	open auction

P

 	
 	purchases

R

 	
 	reference

S

 	
 	state variable

 	
 stock

 	company

 	
 	string

 	structs

T

 	
 	
 testing

 	testing;

 	
 	true

 	type

U

 	
 	uint256

 	
 	unit

V

 	
 	value

 	
 	voting

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Vyper

 		
 Installing Vyper

 		
 Prerequisites

 		
 Installing Python 3.6

 		
 Creating a virtual environment

 		
 Installation

 		
 PIP

 		
 Docker

 		
 Dockerhub

 		
 Dockerfile

 		
 Snap

 		
 Compiling a Contract

 		
 Testing a Contract

 		
 Vyper Contract and Basic Fixtures

 		
 Load Contract and Basic Tests

 		
 Events and Failed Transactions

 		
 Deploying a Contract

 		
 Structure of a Contract

 		
 State Variables

 		
 Functions

 		
 Public Functions

 		
 Private Functions

 		
 Decorators

 		
 Default function

 		
 Events

 		
 NatSpec Metadata

 		
 Contract Interfaces

 		
 Defining Interfaces and Making External Calls

 		
 Importing Interfaces

 		
 Built-in Interfaces

 		
 Implementing an Interface

 		
 Extracting Interfaces

 		
 Vyper by Example

 		
 Simple Open Auction

 		
 Blind Auction

 		
 Safe Remote Purchases

 		
 Crowdfund

 		
 Voting

 		
 Company Stock

 		
 Event Logging

 		
 Example of Logging

 		
 Declaring Events

 		
 Logging Events

 		
 Listening for Events

 		
 Contributing

 		
 Types of Contributions

 		
 How to Suggest Improvements

 		
 How to Report Issues

 		
 Fix Bugs

 		
 Workflow for Pull Requests

 		
 Frequently Asked Questions

 		
 Basic Questions

 		
 What is Vyper?

 		
 Vyper or Solidity?

 		
 What is not included in Vyper?

 		
 How do for loops work?

 		
 How do structs work?

 		
 Built in Functions

 		
 Functions

 		
 floor

 		
 ceil

 		
 convert

 		
 clear

 		
 as_wei_value

 		
 as_unitless_number

 		
 slice

 		
 len

 		
 concat

 		
 keccak256

 		
 sha256

 		
 sqrt

 		
 method_id

 		
 ecrecover

 		
 ecadd

 		
 ecmul

 		
 extract32

 		
 RLPList

 		
 Low Level Built in Functions

 		
 Low Level Functions

 		
 send

 		
 raw_call

 		
 selfdestruct

 		
 raise

 		
 assert

 		
 raw_log

 		
 create_forwarder_to

 		
 blockhash

 		
 Types

 		
 Value Types

 		
 Boolean

 		
 Signed Integer (128 bit)

 		
 Unsigned Integer (256 bit)

 		
 Decimals

 		
 Address

 		
 Unit Types

 		
 Custom Unit Types

 		
 32-bit-wide Byte Array

 		
 Fixed-size Byte Arrays

 		
 Fixed-size Strings

 		
 Reference Types

 		
 Fixed-size Lists

 		
 Structs

 		
 Mappings

 		
 Built In Constants

 		
 Custom Constants

 		
 Initial Values

 		
 Type Conversions

 		
 Release Notes

 		
 v0.1.0-beta.12

 		
 v0.1.0-beta.11

 		
 v0.1.0-beta.10

 		
 v0.1.0-beta.9

 		
 Prior to v0.1.0-beta.9

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

